Discovering the future of molecular sciences

Saved in:
Bibliographic Details
Corporate Author: Ebooks Corporation
Other Authors: Pignataro, Bruno
Format: Electronic eBook
Language:English
Published: Weinheim, Germany : Wiley-VCH, 2014.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: pt. I Advanced Methodologies
  • 1. Supramolecular Receptors for the Recognition of Bioanalytes / Alexander Schiller
  • 1.1. Introduction
  • 1.2. Bioanalytes
  • 1.3. Metal Complexes as Receptors for Biological Phosphates
  • 1.3.1. Fluorescent Zn(II) Based Metal Complexes and Their Applications in Live Cell Imaging
  • 1.3.2. Chromogenic Zn(II)-Based Metal Receptors and Their Applications in Biological Cell Staining
  • 1.4. Functionalized Vesicles for the Recognition of Bioanalytes
  • 1.4.1. Polydiacetylene Based Chromatic Vesicles
  • 1.4.1.1. PDA Based Receptors for Biological Phosphate
  • 1.4.1.2. PDA Based Receptors for Lipopolysaccharide
  • 1.4.1.3. PDA Based Receptors for Oligonucleotides and Nucleic Acids
  • 1.5. Boronic Acid Receptors for Diol-Containing Bioanalytes
  • 1.6. Conclusion and Outlook
  • Acknowledgment
  • References
  • 2. Methods of DNA Recognition / Olalla Vazquez
  • 2.1. Introduction
  • 2.2. Historical Outline: The Central Dogma
  • 2.3. Intermolecular Interaction between the Transcription Factors and the DNA
  • 2.3.1. Structure of DNA and Its Role in the Recognition
  • 2.3.2. DNA Binding Domains of the TF
  • 2.3.3. General Aspects of the Intermolecular Interactions between the TFs and the DNA
  • 2.4. Miniature Versions of Transcription Factors
  • 2.4.1. Synthetic Modification of bZIP Transcription Factors
  • 2.4.2. Residue Grafting
  • 2.4.3. Conjugation in Order to Develop DNA Binding Peptides
  • 2.5. Intermolecular Interaction Between Small Molecules and the DNA
  • 2.5.1. General Concepts
  • 2.5.2. Metallo-DNA Binders: From Cisplatin to Rh Metallo-Insertors
  • 2.5.3. Polypyrroles and Bis(benzamidine) Minor Groove Binders and Their Use as Specific dsDNA Sensors
  • 2.6. Outlook
  • Acknowledgments
  • References
  • 3. Structural Analysis of Complex Molecular Systems by High-Resolution and Tandem Mass Spectrometry / Yury O. Tsybin
  • 3.1. Dissecting Molecular Complexity with Mass Spectrometry
  • 3.2. Advances in Fourier Transform Mass Spectrometry
  • 3.3. Advances in Mass Analyzers for FT-ICR MS
  • 3.4. Advances in Mass Analyzers for Orbitrap FTMS
  • 3.5. Applications of High-Resolution Mass Spectrometry
  • 3.6. Advances in Tandem Mass Spectrometry
  • 3.7. Outlook: Quo vadis FTMS?
  • 3.8. Summary and Future Issues
  • Acknowledgments
  • References
  • 4. Coherent Electronic Energy Transfer in Biological and Artificial Multichromophoric Systems / Elisabetta Collini
  • 4.1. Introduction to Electronic Energy Transfer in Complex Systems
  • 4.2. Meaning of Electronic Coherence in Energy Transfer
  • 4.3. Energy Migration in Terms of Occupation Probability: a Unified Approach
  • 4.4. Experimental Detection of Quantum Coherence
  • 4.5. Electronic Coherence Measured by Two-Dimensional Photon Echo
  • 4.6. Future Perspectives and Conclusive Remarks
  • Acknowledgments
  • References
  • 5. Ultrafast Studies of Carrier Dynamics in Quantum Dots for Next Generation Photovoltaics / Danielle Buckley
  • 5.1. Introduction
  • 5.2. Theoretical Limits
  • 5.3. Bulk Semiconductors
  • 5.4. Semiconductor Quantum Dots
  • 5.4.1. Lead Chalcogenides
  • 5.5. Carrier Dynamics
  • 5.5.1. Carrier Multiplication
  • 5.5.2. Relaxation
  • 5.6. Ultrafast Techniques
  • 5.6.1. Pump-Probe
  • 5.6.2. Photoluminescence
  • 5.6.3. Relaxation Times
  • 5.7. Quantum Efficiency
  • 5.7.1. Quantum Yield Arguments
  • 5.7.2. Experimental Considerations
  • 5.8. Ligand Exchange and Film Studies
  • 5.9. Conclusions
  • Acknowledgments
  • References
  • 6. Micro Flow Chemistry: New Possibilities for Synthetic Chemists / Timothy Noel
  • 6.1. Introduction
  • 6.2. Characteristics of Micro Flow
  • Basic Engineering Principles
  • 6.2.1. Mass Transfer
  • the Importance of Efficient Mixing
  • 6.2.2. Heat Transfer
  • the Importance of Efficient Heat Management
  • 6.2.3. Multiphase Flow
  • 6.3. Unusual Reaction Conditions Enabled by Microreactor Technology
  • 6.3.1. High-Temperature and High-Pressure Processing
  • 6.3.2. Use of Hazardous Intermediates
  • Avoiding Trouble
  • 6.3.3. Photochemistry
  • 6.4. Use of Immobilized Reagents, Scavengers, and Catalysts
  • 6.5. Multistep Synthesis in Flow
  • 6.6. Avoiding Microreactor Clogging
  • 6.7. Reaction Screening and Optimization Protocols in Microreactors
  • 6.8. Scale-Up Issues
  • from Laboratory Scale to Production Scale
  • 6.9. Outlook
  • References
  • 7. Understanding Trends in Reaction Barriers / Israel Fernandez Lopez
  • 7.1. Introduction
  • 7.2. Activation Strain Model and Energy Decomposition Analysis
  • 7.2.1. Activation Strain Model
  • 7.2.2. Energy Decomposition Analysis
  • 7.3. Pericyclic Reactions
  • 7.3.1. Double Group Transfer Reactions
  • 7.3.2. Alder-ene Reactions
  • 7.3.3. 1,3-Dipolar Cycloaddition Reactions
  • 7.3.4. Diels-Alder Reactions
  • 7.4. Nucleophilic Substitutions and Additions
  • 7.4.1. SN2 Reactions
  • 7.4.2. Nucleophilic Additions to Arynes
  • 7.5. Unimolecular Processes
  • 7.6. Concluding Remarks
  • Acknowledgments
  • References
  • pt. II Materials, Nanoscience, and Nanotechnologies
  • 8. Molecular Metal Oxides: Toward a Directed and Functional Future / Haralampos N. Miras
  • 8.1. Introduction
  • 8.2. New Technologies and Analytical Techniques
  • 8.3. New Synthetic Approaches
  • 8.3.1. Building Block Approach
  • 8.3.2. Generation of Novel Building Block Libraries
  • 8.3.2.1. Shrink-Wrapping Effect
  • 8.3.2.2. Hydrothermal and Ionic Thermal Synthesis
  • 8.3.2.3. Novel Templates: XO3 and XO6-Templated POMs
  • 8.3.3. POM-Based Networks
  • 8.4. Continuous Flow Systems and Networked Reactions
  • 8.5. 3D Printing Technology
  • 8.6. Emergent Properties and Novel Phenomena
  • 8.6.1. Porous Keplerate Nanocapsules
  • Chemical Adaptability
  • 8.6.2. Transformation of POM Structures at Interfaces
  • Molecular Tubes and Inorganic Cells
  • 8.6.3. Controlled POM-Based Oscillations
  • 8.7. Conclusions and Perspectives
  • References
  • 9. Molecular Metal Oxides for Energy Conversion and Energy Storage / Carsten Streb
  • 9.1. Introduction to Molecular Metal Oxide Chemistry
  • 9.1.1. Polyoxometalates
  • Molecular Metal Oxide Clusters
  • 9.1.2. Principles of Polyoxometalate Redox Chemistry
  • 9.1.3. Principles of Polyoxometalate Photochemistry
  • 9.1.4. POMs for Energy Applications
  • 9.2. POM Photocatalysis
  • 9.2.1. Roots of POM-Photocatalysis Using UV-light
  • 9.2.2. Sunlight-Driven POM Photocatalysts
  • 9.2.2.1. Structurally Adaptive Systems for Sunlight Conversion
  • 9.2.2.2. Optimized Sunlight Harvesting by Metal Substitution
  • 9.2.2.3. Visible-Light Photocatalysis
  • Inspiration from the Solid-State World
  • 9.2.3. Future Development Perspectives for POM Photocatalysts
  • 9.3. Energy Conversion
  • 9.3.1. Water Splitting
  • 9.3.2. Water Oxidation by Molecular Catalysts
  • 9.3.2.1. Water Oxidation by Ru-and Co-Polyoxometalates
  • 9.3.2.2. Polyoxoniobate Water Splitting
  • 9.3.2.3. Water Oxidation by Dawson Anions in Ionic Liquids
  • 9.3.2.4. On the Stability of Molecular POM-WOCs
  • 9.3.3. Photoreductive H2-Generation
  • 9.3.4. Photoreductive CO2-Activation
  • 9.4. Promising Developments for POMs in Energy Conversion and Storage
  • 9.4.1. Ionic Liquids for Catalysis and Energy Storage
  • 9.4.1.1. Polyoxometalate Ionic Liquids (POM-ILs)
  • 9.4.1.2. Outlook: Future Applications of POM-ILs
  • 9.4.2. POM-Based Photovoltaics
  • 9.4.3. POM-Based Molecular Cluster Batteries
  • 9.5. Summary
  • References
  • 10. Next Generation of Silylene Ligands for Better Catalysts / Shigeyoshi Inoue
  • 10.1. General Introduction
  • 10.1.1. Silylenes
  • 10.1.2. Bissilylenes
  • 10.1.3. Silylene Transition Metal Complexes
  • 10.2. Synthesis and Catalytic Applications of Silylene Transition Metal Complexes
  • 10.2.1. Bis(silylene)titanium Complexes
  • 10.2.2. Bis(silylene)nickel Complex
  • 10.2.3. Pincer-Type Bis(silylene) Complexes (Pd, Ir, Rh)
  • 10.2.4. Bis(silylenyl)-Substituted Ferrocene Cobalt Complex
  • 10.2.5. Silylene Iron Complexes
  • 10.3. Conclusion and Outlook
  • References
  • 11. Halide Exchange Reactions Mediated by Transition Metals / Alicia Casitas Montera
  • 11.1. Introduction
  • 11.2. Nickel-Based Methodologies for Halide Exchanges
  • 11.3. Recent Advances in Palladium-Catalyzed Aryl Halide Exchange Reactions
  • 11.4. Versatility of Copper-Catalyzed Aryl Halide Exchange Reactions
  • 11.5. Conclusions and Perspectives
  • References
  • 12. Nanoparticle Assemblies from Molecular Mediator / Marie-Alexandra Neouze
  • 12.1. Introduction
  • 12.2. Assembly or Self-assembly
  • 12.3. Nanoparticles and Their Protection against Aggregation or Agglomeration
  • 12.3.1. Finite-Size Objects
  • 12.3.2. Protection against Aggregation
  • 12.4. Nanoparticle Assemblies Synthesis Methods
  • 12.4.1. Interligand Bonding
  • 12.4.1.1. Noncovalent Linker Interactions and Self-assembly
  • 12.4.1.2. Covalent Molecular Mediators
  • 12.4.1.3. Noncovalent versus Covalent Interaction
  • 12.4.2. Template Assisted Synthesis
  • 12.4.3. Deposition of 2D Nanoparticle Assemblies: Monolayers, Multilayers, or Films
  • 12.4.3.1. Layer-by-Layer Deposition
  • 12.4.3.2. Langmuir-Blodgett Deposition
  • 12.4.3.3. Evaporation Induced Assembly
  • 12.4.3.4. Bubble Deposition
  • 12.4.4. Pressure-Driven Assembly
  • 12.5. Applications of Nanoparticle Assemblies
  • 12.5.1. Plasmonics
  • 12.5.1.1. Plasmonic Nanostructures
  • 12.5.1.2. Sensoric
  • 12.5.1.3. Signal Amplification/Surface-Enhanced Raman Scattering
  • Contents note continued: 12.5.2. Interacting Super-Spins/Magnetic Materials
  • 12.5.3. Metamaterials
  • 12.5.4. Catalysis/Electrocatalysis
  • 12.5.5. Water Treatment/Photodegradation
  • 12.6. Conclusion
  • References
  • 13. Porous Molecular Solids / Andrew I. Cooper
  • 13.1. Introduction
  • 13.2. Porous Organic Molecular Crystals
  • 13.2.1. Porous Organic Molecules
  • 13.2.2. Porous Organic Cages
  • 13.2.3. Simulation of Porous Organic Molecular Crystals
  • 13.2.4. Applications for Porous Molecular Crystals
  • 13.3. Porous Amorphous Molecular Materials
  • 13.3.1. Synthesis of Porous Amorphous Molecular Materials
  • 13.3.1.1. Synthesis of Amorphous Cage Materials by Scrambling Reactions and Freeze-Drying
  • 13.3.2. Simulation of Porous Amorphous Molecular Materials
  • 13.4. Summary
  • References
  • 14. Electrochemical Motors / Alexander Kuhn
  • 14.1. Inspiration from Biomotors
  • 14.2. Chemical Motors
  • 14.3. Externally Powered Motion
  • 14.4. Asymmetry for a Controlled Motion
  • 14.5. Bipolar Electrochemistry
  • 14.6. Asymmetric Motors Synthetized by Bipolar Electrochemistry
  • 14.7. Direct Use of Bipolar Electrochemistry for Motion Generation
  • 14.8. Conclusion and Perspectives
  • References
  • 15. Azobenzene in Molecular and Supramolecular Devices and Machines / Giacomo Bergamini
  • 15.1. Introduction
  • 15.2. Dendrimers
  • 15.2.1. Azobenzene at the Periphery
  • 15.2.2. Azobenzene at the Core
  • 15.3. Molecular Devices and Machines
  • 15.3.1. Switching Rotaxane Character with Light
  • 15.3.2. Light-Controlled Unidirectional Transit of a Molecular Axle through a Macrocycle
  • 15.4. Conclusion
  • References.