OFDM for underwater acoustic communications /
Saved in:
Main Authors: | , |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Chichester, West Sussex, United Kingdom :
Wiley,
2014.
|
Subjects: | |
Online Access: | Connect to this title online (unlimited simultaneous users allowed; 325 uses per year) |
Table of Contents:
- Machine generated contents note: 1. Introduction
- 1.1. Background and Context
- 1.1.1. Early Exploration of Underwater Acoustics
- 1.1.2. Underwater Communication Media
- 1.1.3. Underwater Systems and Networks
- 1.2. UWA Channel Characteristics
- 1.2.1. Sound Velocity
- 1.2.2. Propagation Loss
- 1.2.3. Time-Varying Multipath
- 1.2.4. Acoustic Propagation Models
- 1.2.5. Ambient Noise and External Interference
- 1.3. Passband Channel Input--Output Relationship
- 1.3.1. Linear Time-Varying Channel with Path-Specific Doppler Scales
- 1.3.2. Linear Time-Varying Channels with One Common Doppler Scale
- 1.3.3. Linear Time-Invariant Channel
- 1.3.4. Linear Time-Varying Channel with Both Amplitude and Delay Variations
- 1.3.5. Linear Time-Varying Channel with Frequency-Dependent Attenuation
- 1.4. Modulation Techniques for UWA Communications
- 1.4.1. Frequency Hopped FSK
- 1.4.2. Direct Sequence Spread Spectrum
- 1.4.3. Single Carrier Modulation
- 1.4.4. Sweep-Spread Carrier (S2C) Modulation
- 1.4.5. Multicarrier Modulation
- 1.4.6. Multi-Input Multi-Output Techniques
- 1.4.7. Recent Developments on Underwater Acoustic Communications
- 1.5. Organization of the Book
- 2. OFDM Basics
- 2.1. Zero-Padded OFDM
- 2.1.1. Transmitted Signal
- 2.1.2. Receiver Processing
- 2.2. Cyclic-Prefixed OFDM
- 2.2.1. Transmitted Signal
- 2.2.2. Receiver Processing
- 2.3. OFDM Related Issues
- 2.3.1. ZP-OFDM versus CP-OFDM
- 2.3.2. Peak-to-Average-Power Ratio
- 2.3.3. Power Spectrum and Bandwidth
- 2.3.4. Subcarrier Assignment
- 2.3.5. Overall Data Rate
- 2.3.6. Design Guidelines
- 2.4. Implementation via Discrete Fourier Transform
- 2.5. Challenges and Remedies for OFDM
- 2.5.1. Benefits of Diversity Combining and Channel Coding
- 2.6. MIMO OFDM
- 2.7. Bibliographical Notes
- 3. Nonbinary LDPC Coded OFDM
- 3.1. Channel Coding for OFDM
- 3.1.1. Channel Coding
- 3.1.2. Coded Modulation
- 3.1.3. Coded OFDM
- 3.2. Nonbinary LDPC Codes
- 3.2.1. Nonbinary Regular Cycle Codes
- 3.2.2. Nonbinary Irregular LDPC Codes
- 3.3. Encoding
- 3.4. Decoding
- 3.4.1. Initialization
- 3.4.2. Variable-to-Check-Node Update
- 3.4.3. Check-to-Variable-Node Update
- 3.4.4. Tentative Decision and Decoder Outputs
- 3.5. Code Design
- 3.5.1. Design of Regular Cycle codes
- 3.5.2. Design of Irregular LDPC Codes
- 3.5.3. Quasi-Cyclic Nonbinary LDPC codes
- 3.6. Simulation Results of Coded OFDM
- 3.7. Bibliographical Notes
- 4. PAPR Control
- 4.1. PAPR Comparison
- 4.2. PAPR Reduction
- 4.2.1. Clipping
- 4.2.2. Selective Mapping
- 4.2.3. Peak Reduction Subcarriers
- 4.3. Bibliographical Notes
- 5. Receiver Overview and Preprocessing
- 5.1. OFDM Receiver Overview
- 5.2. Receiver Preprocessing
- 5.2.1. Receiver Preprocessing
- 5.2.2. Digital Implementation
- 5.2.3. Frequency-Domain Oversampling
- 5.3. Frequency-Domain Input-Output Relationship
- 5.3.1. Single-input Single-Output Channel
- 5.3.2. Single-Input Multi-Output Channel
- 5.3.3. Multi-Input Multi-Output Channel
- 5.3.4. Channel Matrix Structure
- 5.4. OFDM Receiver Categorization
- 5.4.1. ICI-Ignorant Receiver
- 5.4.2. ICI-Aware Receiver
- 5.4.3. Block-by-Block Processing
- 5.4.4. Block-to-Block Processing
- 5.4.5. Discussion
- 5.5. Receiver Performance Bound with Simulated Channels
- 5.5.1. Simulating Underwater Acoustic Channels
- 5.5.2. ICI Effect in Time-Varying Channels
- 5.5.3. Outage Performance of SISO Channel
- 5.6. Extension to CP-OFDM
- 5.6.1. Receiver Preprocessing
- 5.6.2. Frequency-Domain Input--Output Relationship
- 5.7. Bibliographical Notes
- 6. Detection, Synchronization and Doppler Scale Estimation
- 6.1. Cross-Correlation Based Methods
- 6.1.1. Cross-Correlation Based Detection
- 6.1.2. Cross-Correlation Based Synchronization and Doppler Scale Estimation
- 6.2. Detection, Synchronization and Doppler Scale Estimation with CP-OFDM
- 6.2.1. CP-OFDM Preamble with Self-Repetition
- 6.2.2. Self-Correlation Based Detection, Synchronization and Doppler Scale Estimation
- 6.2.3. Implementation
- 6.3. Synchronization and Doppler Scale Estimation for One ZP-OFDM Block
- 6.3.1. Null-Subcarrier based Blind Estimation
- 6.3.2. Pilot-Aided Estimation
- 6.3.3. Decision-Aided Estimation
- 6.4. Simulation Results for Doppler Scale Estimation
- 6.4.1. RMSE Performance with CP-OFDM
- 6.4.2. RMSE Performance with ZP-OFDM
- 6.4.3. Comparison of Blind Methods of CP- and ZP-OFDM
- 6.5. Design Examples in Practical Systems
- 6.6. Residual Doppler Frequency Shift Estimation
- 6.6.1. System Model after Resampling
- 6.6.2. Impact of Residual Doppler Shift Compensation
- 6.6.3. Two Residual Doppler Shift Estimation Methods
- 6.6.4. Simulation Results
- 6.7. Bibliographical Notes
- 7. Channel and Noise Variance Estimation
- 7.1. Problem Formulation for ICI-Ignorant Channel Estimation
- 7.1.1. Input--Output Relationship
- 7.1.2. Dictionary Based Formulation
- 7.2. ICI-Ignorant Sparse Channel Sensing
- 7.2.1. Dictionary Resolution versus Channel Sparsity
- 7.2.2. Sparsity Factor
- 7.2.3. Number of Pilots versus Number of Paths
- 7.3. ICI-Aware Sparse Channel Sensing
- 7.3.1. Problem Formulation
- 7.3.2. ICI-Aware Channel Sensing
- 7.3.3. Pilot Subcarrier Distribution
- 7.3.4. Influence of Data Symbols
- 7.4. Sparse Recovery Algorithms
- 7.4.1. Matching Pursuit
- 7.4.2. E1-Norm Minimization
- 7.4.3. Matrix-Vector Multiplication via FFT
- 7.4.4. Computational Complexity
- 7.5. Extension to Multi-Input Channels
- 7.5.1. ICI-Ignorant Sparse Channel Sensing
- 7.5.2. ICI-Aware Sparse Channel Sensing
- 7.6. Noise Variance Estimation
- 7.7. Noise Prewhitening
- 7.7.1. Noise Spectrum Estimation
- 7.7.2. Whitening in the Frequency Domain
- 7.8. Bibliographical Notes
- 8. Data Detection
- 8.1. Symbol-by-Symbol Detection in ICI-Ignorant OFDM Systems
- 8.1.1. Single-Input Single-Output Channel
- 8.1.2. Single-Input Multi-Output Channel
- 8.2. Block-Based Data Detection in ICI-Aware OFDM Systems
- 8.2.1. MAP Equalizer
- 8.2.2. Linear MMSE Equalizer with A Priori Information
- 8.2.3. Extension to the Single-Input Multi-Output Channel
- 8.3. Data Detection for OFDM Systems with Banded ICI
- 8.3.1. BCJR Algorithm and Log-MAP Implementation
- 8.3.2. Factor-Graph Algorithm with Gaussian Message Passing
- 8.3.3. Computations related to Gaussian Messages
- 8.3.4. Extension to SIMO Channel
- 8.4. Symbol Detectors for MIMO OFDM
- 8.4.1. ICI-Ignorant MIMO OFDM
- 8.4.2. Full-ICI Equalization
- 8.4.3. Banded-ICI Equalization
- 8.5. MCMC Method for Data Detection in MIMO OFDM
- 8.5.1. MCMC Method for ICI-Ignorant MIMO Detection
- 8.5.2. MCMC Method for Banded-ICI MIMO Detection
- 8.6. Bibliographical Notes
- 9. OFDM Receivers with Block-by-Block Processing
- 9.1. Noniterative ICI-Ignorant Receiver
- 9.1.1. Noniterative ICI-Ignorant Receiver Structure
- 9.1.2. Simulation Results: ICI-Ignorant Receiver
- 9.1.3. Experimental Results: ICI-Ignorant Receiver
- 9.2. Noniterative ICI-Aware Receiver
- 9.2.1. Noniterative ICI-Aware Receiver Structure
- 9.2.2. Simulation Results: ICI-Aware Receiver
- 9.2.3. Experimental Results: ICI-Aware Receiver
- 9.3. Iterative Receiver Processing
- 9.3.1. Iterative ICI-Ignorant Receiver
- 9.3.2. Iterative ICI-Aware Receiver
- 9.4. ICI-Progressive Receiver
- 9.5. Simulation Results: ICI-Progressive Receiver
- 9.6. Experimental Results: ICI-Progressive Receiver
- 9.6.1. BLER Performance
- 9.6.2. Environmental Impact
- 9.6.3. Progressive versus Iterative ICI-Aware Receivers
- 9.7. Discussion
- 9.8. Bibliographical Notes
- 10. OFDM Receiver with Clustered Channel Adaptation
- 10.1. Illustration of Channel Dynamics
- 10.2. Modeling Cluster-Based Block-to-Block Channel Variation
- 10.3. Cluster-Adaptation Based Block-to-Block Receiver
- 10.3.1. Cluster Offset Estimation and Compensation
- 10.3.2. Cluster-Adaptation Based Sparse Channel Estimation
- 10.3.3. Channel Re-estimation and Cluster Variance Update
- 10.4. Experimental Results: MACE10
- 10.4.1. BLER Performance with an Overall Resampling
- 10.4.2. BLER Performance with Refined Resampling
- 10.5. Experimental Results: SPACE08
- 10.6. Discussion
- 10.7. Bibliographical Notes
- 11. OFDM in Deep Water Horizontal Communications
- 11.1. System Model for Deep Water Horizontal Communications
- 11.1.1. Transmitted Signal
- 11.1.2. Modeling Clustered Multipath Channel
- 11.1.3. Received Signal
- 11.2. Decision-Feedback Based Receiver Design
- 11.3. Factor-Graph Based Joint IBI/ICI Equalization
- 11.3.1. Probabilistic Problem Formulation
- 11.3.2. Factor-Graph Based Equalization
- 11.4. Iterative Block-to-Block Receiver Processing
- 11.5. Simulation Results
- 11.6. Experimental Results in the AUTEC Environment
- 11.7. Extension to Underwater Broadcasting Networks
- 11.7.1. Underwater Broadcasting Networks
- 11.7.2. Emulated Experimental Results: MACE10
- 11.8. Bibliographical Notes
- 12. OFDM Receiver with Parameterized External Interference Cancellation
- 12.1. Interference Parameterization
- 12.2. Iterative OFDM Receiver with Interference Cancellation
- 12.2.1. Initialization
- 12.2.2. Interference Detection and Estimation
- 12.2.3. Channel Estimation, Equalization and Channel Decoding
- Contents note continued: 12.2.4. Noise Variance Estimation
- 12.3. Simulation Results
- 12.3.1. Time-Invariant Channels
- 12.3.2. Time-Varying Channels
- 12.3.3. Performance of the Proposed Receiver with Different SIRs
- 12.3.4. Interference Detection and Estimation
- 12.4. Experimental Results: AUTEC10
- 12.5. Emulated Results: SPACE08
- 12.6. Discussion
- 12.7. Bibliographical Notes
- 13. Co-located MIMO OFDM
- 13.1. ICI-Ignorant MIMO-OFDM System Model
- 13.2. ICI-Ignorant MIMO-OFDM Receiver
- 13.2.1. Noniterative ICI-Ignorant MIMO-OFDM Receiver
- 13.2.2. Iterative ICI-Ignorant MIMO-OFDM Receiver
- 13.3. Simulation Results: ICI-Ignorant MIMO OFDM
- 13.4. SPACE08 Experimental Results: ICI-Ignorant MIMO OFDM
- 13.5. ICI-Aware MIMO-OFDM System Model
- 13.6. ICI-Progressive MIMO-OFDM Receiver
- 13.6.1. Receiver Overview
- 13.6.2. Sparse Channel Estimation and Noise Variance Estimation
- 13.6.3. Joint ICI/CCI Equalization
- 13.7. Simulation Results: ICI-Progressive MIMO OFDM
- 13.8. SPACE08 Experiment: ICI-Progressive MIMO OFDM
- 13.9. MACE10 Experiment: ICI-Progressive MIMO OFDM
- 13.9.1. BLER Performance with Two Transmitters
- 13.9.2. BLER Performance with Three and Four Transmitters
- 13.10. Initialization for the ICI-Progressive MIMO OFDM
- 13.11. Bibliographical Notes
- 14. Distributed MIMO OFDM
- 14.1. System Model
- 14.2. Multiple-Resampling Front-End Processing
- 14.3. Multiuser Detection (MUD) Based Iterative Receiver
- 14.3.1. Pre-processing with Frequency-Domain Oversampling
- 14.3.2. Joint Channel Estimation
- 14.3.3. Multiuser Data Detection and Channel Decoding
- 14.4. Single-User Detection (SUD) Based Iterative Receiver
- 14.4.1. Single-User Decoding
- 14.4.2. MUI Construction
- 14.5. Emulated Two-User System Using MACE10 Data
- 14.5.1. MUD-Based Receiver with and without Frequency-Domain Oversampling
- 14.5.2. Performance of SUD- and MUD-Based Receivers
- 14.6. Emulated MIMO OFDM with MACE10 and SPACE08 Data
- 14.6.1. One Mobile Single-Transmitter User plus One Stationary Two-Transmitter User
- 14.6.2. One Mobile Single-Transmitter User plus One Stationary Three-Transmitter User
- 14.6.3. Two Mobile Single-Transmitter Users plus One Stationary Two-Transmitter User
- 14.7. Bibliographical Notes
- 15. Asynchronous Multiuser OFDM
- 15.1. System Model for Asynchronous Multiuser OFDM
- 15.2. Overlapped Truncation and Interference Aggregation
- 15.2.1. Overlapped Truncation
- 15.2.2. Interference Aggregation
- 15.3. Asynchronous Multiuser OFDM Receiver
- 15.3.1. Overall Receiver Structure
- 15.5.2. Interblock Interference Subtraction
- 15.3.3. Time-to-Frequency-Domain Conversion
- 15.3.4. Iterative Multiuser Reception and Residual Interference Cancellation
- 15.3.5. Interference Reconstruction
- 15.4. Investigation on Multiuser Asynchronism in an Example Network
- 15.5. Simulation Results
- 15.5.1. Two-User Systems with Time-Varying Channels
- 15.5.2. Multiuser Systems with Time-Invariant Channels
- 15.6. Emulated Results: MACE10
- 15.7. Bibliographical Notes
- 16. OFDM in Relay Channels
- 16.1. Dynamic Coded Cooperation in a Single-Relay Network
- 16.1.1. Relay Operations
- 16.1.2. Receiver Processing at the Destination
- 16.1.3. Discussion
- 16.2. Design Example Based on Rate-Compatible Channel Coding
- 16.2.1. Code Design
- 16.2.2. Simulation Results
- 16.3. Design Example Based on Layered Erasure- and Error-Correction Coding
- 16.3.1. Code Design
- 16.3.2. Implementation
- 16.3.3. Experiment in Swimming Pool
- 16.3.4. Sea Experiment
- 16.4. Dynamic Block Cycling over a Line Network
- 16.4.1. Hop-by-Hop Relay and Turbo Relay
- 16.4.2. Dynamic Block-Cycling Transmissions
- 16.4.3. Discussion
- 16.5. Bibliographical Notes
- 17. OFDM-Modulated Physical-Layer Network Coding
- 17.1. System Model for the OFDM-Modulated PLNC
- 17.2. Three Iterative OFDM Receivers
- 17.2.1. Iterative Separate Detection and Decoding
- 17.2.2. Iterative XOR-ed PLNC Detection and Decoding
- 17.2.3. Iterative Generalized PLNC Detection and Decoding
- 17.3. Outage Probability Bounds in Time-Invariant Channels
- 17.4. Simulation Results
- 17.4.1. Single-Path Time-Invariant Channel
- 17.4.2. Multipath Time-Invariant Channel
- 17.4.3. Multipath Time-Varying Channel
- 17.5. Experimental Results: SPACE08
- 17.6. Bibliographical Notes
- 18. OFDM Modem Development
- 18.1. Components of an Acoustic Modem
- 18.2. OFDM Acoustic Modem in Air
- 18.3. OFDM Lab Modem
- 18.4. AquaSeNT OFDM Modem
- 18.5. Bibliographical Notes
- 19. Underwater Ranging and Localization
- 19.1. Ranging
- 19.1.1. One-Way Signaling
- 19.1.2. Two-Way Signaling
- 19.1.3. Challenges for High-Precision Ranging
- 19.2. Underwater GPS
- 19.2.1. System Overview
- 19.2.2. One-Way Travel Time Estimation
- 19.2.3. Localization
- 19.2.4. Tracking Algorithms
- 19.2.5. Simulation Results
- 19.2.6. Field Test in a Local Lake
- 19.3. On-Demand Asynchronous Localization
- 19.3.1. Localization Procedure
- 19.3.2. Localization Algorithm for the Initiator
- 19.3.3. Localization Algorithm for a Passive Node
- 19.3.4. Localization Performance Results in a Lake
- 19.4. Bibliographical Notes
- Appendix A Compressive Sensing
- A.1. Compressive Sensing
- A.1.1. Sparse Representation
- A.1.2. Exactly and Approximately Sparse Signals
- A.1.3. Sensing
- A.1.4. Signal Recovery and RIP
- A.1.5. Sensing Matrices
- A.2. Sparse Recovery Algorithms
- A.2.1. Matching Pursuits
- A.2.2. e1-Norm Minimization
- A.3. Applications of Compressive Sensing
- A.3.1. Applications of Compressive Sensing in Communications
- A.3.2. Compressive Sensing in Underwater Acoustic Channels
- Appendix B Experiment Description
- B.1. SPACE08 Experiment
- B.2. MACE10 Experiment
- B.2.1. Experiment Setup
- B.2.2. Mobility Estimation.