Foundations of fuzzy control : a practical approach /

Saved in:
Bibliographic Details
Main Author: Jantzen, Jan
Corporate Author: Ebooks Corporation
Format: Electronic eBook
Language:English
Published: Chichester, West Sussex, United Kingdom : Wiley, 2013.
Edition:Second edition.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1.1. What Is Fuzzy Control?
  • 1.2. Why Fuzzy Control?
  • 1.3. Controller Design
  • 1.4. Introductory Example: Stopping a Car
  • 1.5. Nonlinear Control Systems
  • 1.6. Summary
  • 1.7. Autopilot Simulator*
  • 1.8. Notes and References*
  • 2.1. Fuzzy Sets
  • 2.1.1. Classical Sets
  • 2.1.2. Fuzzy Sets
  • 2.1.3. Universe
  • 2.1.4. Membership Function
  • 2.1.5. Possibility
  • 2.2. Fuzzy Set Operations
  • 2.2.1. Union, Intersection, and Complement
  • 2.2.2. Linguistic Variables
  • 2.2.3. Relations
  • 2.3. Fuzzy If-Then Rules
  • 2.3.1. Several Rules
  • 2.4. Fuzzy Logic
  • 2.4.1. Truth-Values
  • 2.4.2. Classical Connectives
  • 2.4.3. Fuzzy Connectives
  • 2.4.4. Triangular Norms
  • 2.5. Summary
  • 2.6. Theoretical Fuzzy Logic*
  • 2.6.1. Tautologies
  • 2.6.2. Fuzzy Implication
  • 2.6.3. Rules of Inference
  • 2.6.4. Generalized Modus Ponens
  • 2.7. Notes and References*
  • 3.1. Rule Based Controller
  • 3.1.1. Rule Base Block
  • 3.1.2. Inference Engine Block
  • 3.2. Sugeno Controller
  • 3.3. Autopilot Example: Four Rules
  • 3.4. Table Based Controller
  • 3.5. Linear Fuzzy Controller
  • 3.6. Summary
  • 3.7. Other Controller Components*
  • 3.7.1. Controller Components
  • 3.8. Other Rule Based Controllers*
  • 3.8.1. Mamdani Controller
  • 3.8.2. FLS Controller
  • 3.9. Analytical Simplification of the Inference*
  • 3.9.1. Four Rules
  • 3.9.2. Nine Rules
  • 3.10. Notes and References*
  • 4.1. Fuzzy P Controller
  • 4.2. Fuzzy PD Controller
  • 4.3. Fuzzy PD+I Controller
  • 4.4. Fuzzy Incremental Controller
  • 4.5. Tuning
  • 4.5.1. Ziegler-Nichols Tuning
  • 4.5.2. Hand-Tuning
  • 4.5.3. Scaling
  • 4.6. Simulation Example: Third-Order Process
  • 4.7. Autopilot Example: Stable Equilibrium
  • 4.7.1. Result
  • 4.8. Summary
  • 4.9. Derivative Spikes and Integrator Windup*
  • 4.9.1. Setpoint Weighting
  • 4.9.2. Filtered Derivative
  • 4.9.3. Anti-Windup
  • 4.10. PID Loop Shaping*
  • 4.11. Notes and References*
  • 5.1. Nonlinear Components
  • 5.2. Phase Plot
  • 5.3. Four Standard Control Surfaces
  • 5.4. Fine-Tuning
  • 5.4.1. Saturation in the Universes
  • 5.4.2. Limit Cycle
  • 5.4.3. Quantization
  • 5.4.4. Noise
  • 5.5. Example: Unstable Frictionless Vehicle
  • 5.6. Example: Nonlinear Valve Compensator
  • 5.7. Example: Motor Actuator with Limits
  • 5.8. Autopilot Example: Regulating a Mass Load
  • 5.9. Summary
  • 5.10. Phase Plane Analysis*
  • 5.10.1. Trajectory in the Phase Plane
  • 5.10.2. Equilibrium Point
  • 5.10.3. Stability
  • 5.11. Geometric Interpretation of the PD Controller*
  • 5.11.1. Switching Line
  • 5.11.2. Rule Base for Switching
  • 5.12. Notes and References*
  • 6.1. Model Reference Adaptive Systems
  • 6.2. Original SOC
  • 6.2.1. Adaptation Law
  • 6.3. Modified SOC
  • 6.4. Example with a Long Deadtime
  • 6.4.1. Tuning
  • 6.4.2. Adaptation
  • 6.4.3. Performance
  • 6.5. Tuning and Time Lock
  • 6.5.1. Tuning of the SOC Parameters
  • 6.5.2. Time Lock
  • 6.6. Summary
  • 6.7. Example: Adaptive Control of a First-Order Process*
  • 6.7.1. MIT Rule
  • 6.7.2. Choice of Control Law
  • 6.7.3. Choice of Adaptation Law
  • 6.7.4. Convergence
  • 6.8. Analytical Derivation of the SOC Adaptation Law*
  • 6.8.1. Reference Model
  • 6.8.2. Adjustment Mechanism
  • 6.8.3. Fuzzy Controller
  • 6.9. Notes and References*
  • 7.1. Reference Model
  • 7.2. Performance Measures
  • 7.3. PID Tuning from Performance Specifications
  • 7.4. Gain Margin and Delay Margin
  • 7.5. Test of Four Difficult Processes
  • 7.5.1. Higher-Order Process
  • 7.5.2. Double Integrator Process
  • 7.5.3. Process with a Long Time Delay
  • 7.5.4. Process with Oscillatory Modes
  • 7.6. Nyquist Criterion for Stability
  • 7.6.1. Absolute Stability
  • 7.6.2. Relative Stability
  • 7.7. Relative Stability of the Standard Control Surfaces
  • 7.8. Summary
  • 7.9. Describing Functions*
  • 7.9.1. Static Nonlinearity
  • 7.9.2. Limit Cycle
  • 7.10. Frequency Responses of the FPD and FPD+I Controllers*
  • 7.10.1. FPD Frequency Response with a Linear Control Surface
  • 7.10.2. FPD Frequency Response with Nonlinear Control Surfaces
  • 7.10.3. Fuzzy PD+I Controller
  • 7.10.4. Limit Cycle
  • 7.11. Analytical Derivation of Describing Functions for the Standard Surfaces*
  • 7.11.1. Saturation Surface
  • 7.11.2. Deadzone Surface
  • 7.11.3. Quantizer Surface
  • 7.12. Notes and References*
  • 8.1. Point Designs and Interpolation
  • 8.2. Fuzzy Gain Scheduling
  • 8.3. Fuzzy Compensator Design
  • 8.4. Autopilot Example: Stopping on a Hilltop
  • 8.5. Summary
  • 8.6. Case Study: the FLS Controller*
  • 8.6.1. Cement Kiln Control
  • 8.6.2. High-Level Fuzzy Control
  • 8.6.3. FLS Design Procedure
  • 8.7. Notes and References*
  • 9.1. Basis Function Architecture
  • 9.2. Handmade Models
  • 9.2.1. Approximating a Curve
  • 9.2.2. Approximating a Surface
  • 9.3. Machine-Made Models
  • 9.3.1. Least-Squares Line Fit
  • 9.3.2. Least-Squares Basis Function Fit
  • 9.4. Cluster Analysis
  • 9.4.1. Mahalanobis Distance
  • 9.4.2. Hard Clusters, HCM Algorithm
  • 9.4.3. Fuzzy Clusters, FCM Algorithm
  • 9.5. Training and Testing
  • 9.6. Summary
  • 9.7. Neuro-Fuzzy Models*
  • 9.7.1. Neural Networks
  • 9.7.2. Gradient Descent Algorithm
  • 9.7.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)
  • 9.8. Notes and References*
  • 10.1. Hot Water Heater
  • 10.1.1. Installing a Timer Switch
  • 10.1.2. Fuzzy P Controller
  • 10.2. Temperature Control of a Tank Reactor
  • 10.2.1. CSTR Model
  • 10.2.2. Results and Discussion
  • 10.3. Idle Speed Control of a Car Engine
  • 10.3.1. Engine Model
  • 10.3.2. Results and Discussion
  • 10.4. Balancing a Ball on a Cart
  • 10.4.1. Mathematical Model
  • 10.4.2. Step 1: Design a Crisp PD Controller
  • 10.4.3. Step 2: Replace it with a Linear Fuzzy
  • 10.4.4. Step 3: Make it Nonlinear
  • 10.4.5. Step 4: Fine-Tune it
  • 10.5. Dynamic Model of a First-Order Process with a Nonlinearity
  • 10.5.1. Supervised Model
  • 10.5.2. Semi-Automatic Identification by a Modified HCM
  • 10.6. Summary
  • 10.7. Further State-Space Analysis of the Cart-Ball System*
  • 10.7.1. Nonlinear Equations
  • 10.8. Notes and References*.