Offshore wind energy generation : control, protection, and integration to electrical systems /

Saved in:
Bibliographic Details
Main Authors: Anaya-Lara, Olimpo (Author), Campos-Gaona, David (Author), Moreno-Goytia, Edgar Lenymirko (Author), Adam, Grain Philip (Author)
Corporate Author: Ebooks Corporation
Format: Electronic eBook
Language:English
Published: Chichester, West Sussex, United Kingdom : Wiley, 2014.
Edition:First edition.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1.1. Background
  • 1.2. Typical Subsystems
  • 1.3. Wind Turbine Technology
  • 1.3.1. Basics
  • 1.3.2. Architectures
  • 1.3.3. Offshore Wind Turbine Technology Status
  • 1.4. Offshore Transmission Networks
  • 1.5. Impact on Power System Operation
  • 1.5.1. Power System Dynamics and Stability
  • 1.5.2. Reactive Power and Voltage Support
  • 1.5.3. Frequency Support
  • 1.5.4. Wind Turbine Inertial Response
  • 1.6. Grid Code Regulations for the Connection of Wind Generation
  • Acknowledgements
  • References
  • 2.1. Introduction
  • 2.1.1. Induction Generator (IG)
  • 2.1.2. Back-to-Back Converter
  • 2.1.3. Gearbox
  • 2.1.4. Crowbar Protection
  • 2.1.5. Turbine Transformer
  • 2.2. DFIG Architecture and Mathematical Modelling
  • 2.2.1. IG in the abc Reference Frame
  • 2.2.2. IG in the dq0 Reference Frame
  • 2.2.3. Mechanical System
  • 2.2.4. Crowbar Protection
  • 2.2.5. Modelling of the DFIG B2B Power Converter
  • 2.2.6. Average Modelling of Power Electronic Converters
  • 2.2.7. dc Circuit
  • 2.3. Control of the DFIG WT
  • 2.3.1. PI Control of Rotor Speed
  • 2.3.2. PI Control of DFIG Reactive Power
  • 2.3.3. PI Control of Rotor Currents
  • 2.3.4. PI Control of dc Voltage
  • 2.3.5. PI Control of Grid-side Converter Currents
  • 2.4. DFIG Dynamic Performance Assessment
  • 2.4.1. Three-phase Fault
  • 2.4.2. Symmetrical Voltage Dips
  • 2.4.3. Asymmetrical Faults
  • 2.4.4. Single-Phase-to-Ground Fault
  • 2.4.5. Phase-to-Phase Fault
  • 2.4.6. Torque Behaviour under Symmetrical Faults
  • 2.4.7. Torque Behaviour under Asymmetrical Faults
  • 2.4.8. Effects of Faults in the Reactive Power Consumption of the IG
  • 2.5. Fault Ride-Through Capabilities and Grid Code Compliance
  • 2.5.1. Advantages and Disadvantages of the Crowbar Protection
  • 2.5.2. Effects of DFIG Variables over Its Fault Ride-Through Capabilities
  • 2.6. Enhanced Control Strategies to Improve DFIG Fault Ride-Through Capabilities
  • 2.6.1. Two Degrees of Freedom Internal Model Control (IMC)
  • 2.6.2. IMC Controller of the Rotor Speed
  • 2.6.3. IMC Controller of the Rotor Currents
  • 2.6.4. IMC Controller of the dc Voltage
  • 2.6.5. IMC Controller of the Grid-Side Converter Currents
  • 2.6.6. DFIG IMC Controllers Tuning for Attaining Robust Control
  • 2.6.7. Robust Stability Theorem
  • References
  • 3.1. Synchronous Machine Fundamentals
  • 3.1.1. Synchronous Generator Construction
  • 3.1.2. Air-Gap Magnetic Field of the Synchronous Generator
  • 3.2. Synchronous Generator Modelling in the dq Frame
  • 3.2.1. Steady-State Operation
  • 3.2.2. Synchronous Generator with Damper Windings
  • 3.3. Control of Large Synchronous Generators
  • 3.3.1. Excitation Control
  • 3.3.2. Prime Mover Control
  • 3.4. Fully-Rated Converter Wind Turbines
  • 3.5. FRC-WT with Synchronous Generator
  • 3.5.1. Permanent Magnets Synchronous Generator
  • 3.5.2. FRC-WT Based on Permanent Magnet Synchronous Generator
  • 3.5.3. Generator-Side Converter Control
  • 3.5.4. Modelling of the dc Link
  • 3.5.5. Network-Side Converter Control
  • 3.6. FRC-WT with Squirrel-Cage Induction Generator
  • 3.6.1. Control of the FRC-IG Wind Turbine
  • 3.7. FRC-WT Power System Damper
  • 3.7.1. Power System Oscillations Damping Controller
  • 3.7.2. Influence of Wind Generation on Network Damping
  • 3.7.3. Influence of FRC-WT Damping Controller on Network Damping
  • Acknowledgements
  • References
  • 4.1. Typical Components
  • 4.2. Wind Turbines for Offshore [—] General Aspects
  • 4.3. Electrical Collectors
  • 4.3.1. Wind Farm Clusters
  • 4.4. Offshore Transmission
  • 4.4.1. HVAC Transmission
  • 4.4.2. HVDC Transmission
  • 4.4.3. CSC-HVDC Transmission
  • 4.4.4. VSC-HVDC Transmission
  • 4.4.5. Multi-Terminal VSC-HVDC Networks
  • 4.5. Offshore Substations
  • 4.6. Reactive Power Compensation Equipment
  • 4.6.1. Static Var Compensator (SVC)
  • 4.6.2. Static Compensator (STATCOM)
  • 4.7. Subsea Cables
  • 4.7.1. Ac Subsea Cables
  • 4.7.2. Dc Subsea Cables
  • 4.7.3. Modelling of Underground and Subsea Cables
  • Acknowledgements
  • References
  • 5.1. Background
  • 5.2. Offshore Wind Farm Connection Using Point-to-Point VSC-HVDC Transmission
  • 5.3. Offshore Wind Farm Connection Using HVAC Transmission
  • 5.4. Offshore Wind Farm Connected Using Parallel HVACNSC-HVDC Transmission
  • 5.5. Offshore Wind Farms Connected Using a Multi-Terminal VSC-HVDC Network
  • 5.6. Multi-Terminal VSC-HVDC for Connection of Inter-Regional Power Systems
  • Acknowledgements
  • References
  • 6.1. Protection within the Wind Farm ac Network
  • 6.1.1. Wind Generator Protection Zone
  • 6.1.2. Feeder Protection Zone
  • 6.1.3. Busbar Protection Zone
  • 6.1.4. High-Voltage Transformer Protection Zone
  • 6.2. Study of Faults in the ac Transmission Line of an Offshore DFIG Wind Farm
  • 6.2.1. Case Study 1
  • 6.2.2. Case Study 2
  • 6.3. Protections for dc Connected Offshore Wind Farms
  • 6.3.1. VSC-HVDC Converter Protection Scheme
  • 6.3.2. Analysis of dc Transmission Line Fault
  • 6.3.3. Pole-to-Pole Faults
  • 6.3.4. Pole-to-Earth Fault
  • 6.3.5. HVDC dc Protections: Challenges and Trends
  • 6.3.6. Simulation Studies of Faults in the dc Transmission Line of an Offshore DFIG Wind Farm
  • Acknowledgements
  • References
  • 7.1. Wind Turbine Advanced Control for Load Mitigation
  • 7.1.1. Blade Pitch Control
  • 7.1.2. Blade Twist Control
  • 7.1.3. Variable Diameter Rotor
  • 7.1.4. Active Flow Control
  • 7.2. Converter Interface Arrangements and Collector Design
  • 7.2.1. Converters on Turbine
  • 7.2.2. Converters on Platform
  • 7.2.3. Ac Collection Options: Fixed or Variable Frequency
  • 7.2.4. Evaluation of >Higher (>33 kV) Collection Voltage
  • 7.3. Dc Transmission Protection
  • 7.4. Energy Storage Systems (EESs)
  • 7.4.1. Batteries
  • 7.4.2. Super-Capacitors
  • 7.4.3. Flywheel Storage System
  • 7.4.4. Pumped-Hydro Storage
  • 7.4.5. Compressed-Air Storage Systems
  • 7.4.6. Superconducting Magnetic Energy Storage (SMES)
  • 7.5. Fault Current Limiters (FCLs)
  • 7.6. Sub-Sea Substations
  • 7.7. HTSCs, GITs and GILs
  • 7.7.1. HTSCs (High-Temperature Superconducting Cables)
  • 7.7.2. GITs (Gas-Insulated Transformers)
  • 7.7.3. GILs (Gas-Insulated Lines)
  • 7.8. Developments in Condition Monitoring
  • 7.8.1. Partial Discharge Monitoring in HV Cables
  • 7.8.2. Transformer Condition Monitoring
  • 7.8.3. Gas-Insulated Switchgear Condition Monitoring
  • 7.8.4. Power Electronics Condition Monitoring
  • 7.9. Smart Grids for Large-Scale Offshore Wind Integration
  • 7.9.1. VPP Control Approach
  • 7.9.2. Phasor Measurement Units
  • Acknowledgements
  • References
  • A.1. Two-Level Converter
  • A.1.1. Operation
  • A.1.2. Voltage Source Converter Square-Mode Operation
  • A.1.3. Pulse Width Modulation
  • A.2. Neutral-Point Clamped Converter
  • A.2.1. Selective Harmonic Elimination
  • A.2.2. Sinusoidal Pulse Width Modulation
  • A.3. Flying Capacitor (FC) Multilevel Converter
  • A.4. Cascaded Multilevel Converter
  • A.5. Modular Multilevel Converter
  • References.