|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
b2652049 |
003 |
CStclU |
005 |
20130910115017.7 |
006 |
m o d |
007 |
cr un|---uuuuu |
008 |
130506s2013 enk ob 001 0 eng |
010 |
|
|
|a 2013018479
|
020 |
|
|
|a 9781118502181 (electronic bk.)
|
020 |
|
|
|a 9781118502150 (electronic bk.)
|
020 |
|
|
|a 1118502159 (electronic bk.)
|
020 |
|
|
|a 1118502183 (electronic bk.)
|
020 |
|
|
|z 9781118502105
|
020 |
|
|
|z 1118502108
|
020 |
|
|
|z 9781118502174
|
020 |
|
|
|z 1118502175
|
020 |
|
|
|z 9780470973554 (cloth)
|
020 |
|
|
|z 1299648487 (ebk)
|
020 |
|
|
|z 9781299648487 (ebk)
|
035 |
|
|
|a (NhCcYBP)EBC1207851
|
037 |
|
|
|a 496098
|b MIL
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
042 |
|
|
|a pcc
|
050 |
|
4 |
|a QH541.15.B56
|b R67 2013
|
072 |
|
7 |
|a NAT
|x 010000
|2 bisacsh
|
072 |
|
7 |
|a NAT
|x 045040
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 026000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 020000
|2 bisacsh
|
082 |
0 |
0 |
|a 577/.16
|2 23
|
100 |
1 |
|
|a Rossberg, Axel G.,
|d 1969-
|
245 |
1 |
0 |
|a Food webs and biodiversity :
|b foundations, models, data /
|c Axel G. Rossberg.
|
264 |
|
1 |
|a Chichester, West Sussex, UK :
|b Wiley Blackwell,
|c 2013.
|
300 |
|
|
|a 1 online resource (xx, 376 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
533 |
|
|
|a Electronic reproduction.
|b Perth, W.A.
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on September 10, 2013).
|
505 |
0 |
0 |
|a Machine generated contents note:
|g pt. I
|t Preliminaries --
|g 1.
|t Introduction --
|g 2.
|t Models and Theories --
|g 2.1.
|t usefulness of models --
|g 2.2.
|t What models should model --
|g 2.3.
|t possibility of ecological theory --
|g 2.4.
|t Theory-driven ecological research --
|g 3.
|t Some Basic Concepts --
|g 3.1.
|t Basic concepts of food-web studies --
|g 3.2.
|t Physical quantities and dimensions --
|g pt. II
|t Elements of Food-Web Models --
|g 4.
|t Energy and Biomass Budgets --
|g 4.1.
|t Currencies of accounting --
|g 4.2.
|t Rates and efficiencies --
|g 4.3.
|t Energy budgets in food webs --
|g 5.
|t Allometric Scaling Relationships Between Body Size and Physiological Rates --
|g 5.1.
|t Scales and scaling --
|g 5.2.
|t Allometric scaling --
|g 6.
|t Population Dynamics --
|g 6.1.
|t Basic considerations --
|g 6.1.1.
|t Exponential population growth --
|g 6.1.2.
|t Five complications --
|g 6.1.3.
|t Environmental variability --
|g 6.2.
|t Structured populations and density-dependence --
|g 6.2.1.
|t dilemma between species and stages --
|g 6.2.2.
|t Explicitly stage-structured population dynamics --
|g 6.2.3.
|t Communities of structured populations --
|g 6.3.
|t Quasi-Neutral Approximation --
|g 6.3.1.
|t emergence of food webs --
|g 6.3.2.
|t Rana catesbeiana and its resources --
|g 6.3.3.
|t Numerical test of the approximation --
|g 6.4.
|t Reproductive value --
|g 6.4.1.
|t concept of reproductive value --
|g 6.4.2.
|t role of reproductive value in the QNA --
|g 6.4.3.
|t Body mass as a proxy for reproductive value --
|g 7.
|t From Trophic Interactions to Trophic Link Strengths --
|g 7.1.
|t Functional and numerical responses --
|g 7.2.
|t Three models for functional responses --
|g 7.2.1.
|t Linear response --
|g 7.2.2.
|t Type II response --
|g 7.2.3.
|t Type II response with prey switching --
|g 7.2.4.
|t Strengths and weaknesses of these models --
|g 7.3.
|t Food webs as networks of trophic link strengths --
|g 7.3.1.
|t ontology of trophic link strengths --
|g 7.3.2.
|t Variability of trophic link strengths --
|g 8.
|t Tropic Niche Space and Trophic Traits --
|g 8.1.
|t Topology and dimensionality of trophic niche space --
|g 8.1.1.
|t Formal setting --
|g 8.1.2.
|t Definition of trophic niche-space dimensionality --
|g 8.2.
|t Examples and ecological interpretations --
|g 8.2.1.
|t minimal example --
|g 8.2.2.
|t Is the definition of dimensionality reasonable? --
|g 8.2.3.
|t Dependencies between vulnerability and foraging traits of a species --
|g 8.2.4.
|t range of phenotypes considered affects niche-space dimensionality --
|g 8.3.
|t Determination of trophic niche-space dimensionality --
|g 8.3.1.
|t Typical empirical data --
|g 8.3.2.
|t Direct estimation of dimensionality --
|g 8.3.3.
|t Iterative estimation of dimensionality --
|g 8.4.
|t Identification of trophic traits --
|g 8.4.1.
|t Formal setting --
|g 8.4.2.
|t Dimensional reduction --
|g 8.5.
|t geometry of trophic niche space --
|g 8.5.1.
|t Abstract trophic traits --
|g 8.5.2.
|t Indeterminacy in abstract trophic traits --
|g 8.5.3.
|t D-dimensional niche space as a pseudo-Euclidean space --
|g 8.5.4.
|t Linear transformations of abstract trophic traits --
|g 8.5.5.
|t Non-linear transformations of abstract trophic traits --
|g 8.5.6.
|t Standardization and interpretation of abstract trophic traits --
|g 8.5.7.
|t hypothesis and a convention --
|g 8.5.8.
|t Getting oriented in trophic niche space --
|g 8.6.
|t Conclusions --
|g 9.
|t Community Turnover and Evolution --
|g 9.1.
|t spatial scale of interest --
|g 9.2.
|t How communities evolve --
|g 9.3.
|t mutation-for-dispersion trick --
|g 9.4.
|t Mutation-for-dispersion in a neutral food-web model --
|g 10.
|t Population-Dynamical Matching Model --
|g pt. III
|t Mechanisms and Processes --
|g 11.
|t Basic Characterizations of Link-Strength Distributions --
|g 11.1.
|t Modelling the distribution of logarithmic link strengths --
|g 11.1.1.
|t General normally distributed trophic traits --
|g 11.1.2.
|t Isotropically distributed trophic traits --
|g 11.2.
|t High-dimensional trophic niche spaces --
|g 11.2.1.
|t Understanding link stengths in high-dimensional trophic niche spaces --
|g 11.2.2.
|t Log-normal probability distributions --
|g 11.2.3.
|t limit of log-normally distributed trophic link strength --
|g 11.2.4.
|t Correlations between trophic link strengths --
|g 11.2.5.
|t distribution of the strengths of observable links --
|g 11.2.6.
|t probability of observing links (connectance) --
|g 11.2.7.
|t Estimation of link-strength spread and Pareto exponent --
|g 11.2.8.
|t Empirical examples --
|g 12.
|t Diet Partitioning --
|g 12.1.
|t diet partitioning function --
|g 12.1.1.
|t Relation to the probability distribution of diet proportions --
|g 12.1.2.
|t Another probabilistic interpretation of the DPF --
|g 12.1.3.
|t normalization property of the DPF --
|g 12.1.4.
|t Empirical determination of the DPF --
|g 12.2.
|t Modelling the DPF --
|g 12.2.1.
|t Formal setting --
|g 12.2.2.
|t Diet ratios --
|g 12.2.3.
|t DPF for high-dimensional trophic niche spaces --
|g 12.2.4.
|t Gini-Simpson dietary diversity --
|g 12.2.5.
|t Dependence of the DPF on niche-space dimensionality --
|g 12.3.
|t Comparison with data --
|g 12.4.
|t Conclusions --
|g 13.
|t Multivariate Link-Strength Distributions and Phylogenetic Patterns --
|g 13.1.
|t Modelling phylogenetic structure in trophic traits --
|g 13.1.1.
|t Phylogenetic correlations among logarithmic link strengths --
|g 13.1.2.
|t Phylogenetic correlations among link strengths --
|g 13.1.3.
|t Phylogenetic patterns in binary food webs --
|g 13.2.
|t matching model --
|g 13.2.1.
|t simple model for phylogenetic structure in food webs --
|g 13.2.2.
|t Definition of the matching model --
|g 13.2.3.
|t Sampling steady-state matching model food webs --
|g 13.2.4.
|t Alternatives to the matching model --
|g 13.3.
|t Characteristics of phylogenetically structured food webs --
|g 13.3.1.
|t Graphical representation of food-web topologies --
|g 13.3.2.
|t Standard parameter values --
|g 13.3.3.
|t Intervality --
|g 13.3.4.
|t Intervality and trophic niche-space dimensionality --
|g 13.3.5.
|t Degree distributions --
|g 13.3.6.
|t Other phylogenetic patterns --
|g 13.3.7.
|t Is phylogeny just a nuisance? --
|g 14.
|t Framework Theory for Community Assembly --
|g 14.1.
|t Ecological communities as dynamical systems --
|g 14.2.
|t Existence, positivity, stability, and permanence --
|g 14.3.
|t Generic bifurcations in community dynamics and their ecological phenomenology --
|g 14.3.1.
|t General concepts --
|g 14.3.2.
|t Saddle-node bifurcations --
|g 14.3.3.
|t Hopf bifurcations --
|g 14.3.4.
|t Transcritical bifurcations --
|g 14.3.5.
|t Bifurcations of complicated attractors --
|g 14.4.
|t Comparison with observations --
|g 14.4.1.
|t Extirpations and invasions proceed slowly --
|g 14.4.2.
|t logistic equation works quite well --
|g 14.4.3.
|t IUCN Red-List criteria highlight specific extinction scenarios --
|g 14.4.4.
|t Conclusion --
|g 14.5.
|t Invasion fitness and harvesting resistance --
|g 14.5.1.
|t Invasion fitness --
|g 14.5.2.
|t Harvesting resistance: definition --
|g 14.5.3.
|t Harvesting resistance: interpretation --
|g 14.5.4.
|t Harvesting resistance: computation --
|g 14.5.5.
|t Interpretation of h [→] 0 --
|g 14.6.
|t Community assembly and stochastic species packing --
|g 14.6.1.
|t Community saturation and species packing --
|g 14.6.2.
|t Invasion probability --
|g 14.6.3.
|t steady-state distribution of harvesting resistance --
|g 14.6.4.
|t scenario of stochastic species packing --
|g 14.6.5.
|t numerical example --
|g 14.6.6.
|t Biodiversity and ecosystem functioning --
|g 15.
|t Competition in Food Webs --
|g 15.1.
|t Basic concepts --
|g 15.1.1.
|t Modes of competition --
|g 15.1.2.
|t Interactions in communities --
|g 15.2.
|t Competition in two-level food webs --
|g 15.2.1.
|t Lotka-Volterra two-level food-web model --
|g 15.2.2.
|t Computation of the equilibrium point --
|g 15.2.3.
|t Direct competition among producers --
|g 15.2.4.
|t Resource-mediated competition in two-level food webs --
|g 15.2.5.
|t Consumer-mediated competition in two-level food webs --
|g 15.3.
|t Competition in arbitrary food webs --
|g 15.3.1.
|t general Lotka-Volterra food-web model --
|g 15.3.2.
|t competition matrix for general food webs --
|g 15.3.3.
|t L-R-P formalism --
|g 15.3.4.
|t Ecological interpretations of the matrices L, R, and P --
|g 15.3.5.
|t Formal computation of the equilibrium point --
|g 15.3.6.
|t Consumer-mediated competition in general food webs --
|g 15.3.7.
|t Consumer-mediated competitive exclusion --
|g 15.3.8.
|t Conclusions --
|g 16.
|t Mean-Field Theory of Resource-Mediated Competition --
|g 16.1.
|t Transition to scaled variables --
|g 16.1.1.
|t competitive overlap matrix --
|g 16.1.2.
|t Free abundances --
|g 16.2.
|t extended mean-field theory of competitive exclusion --
|g 16.2.1.
|t Assumptions --
|g 16.2.2.
|t Separation of means and residuals --
|g 16.2.3.
|t Mean-field theory for the mean scaled abundance --
|g 16.2.4.
|t Mean-field theory for the variance of scaled abundance --
|g 16.2.5.
|t coefficient of variation of scaled abundance --
|g 16.2.6.
|t Related theories --
|g 17.
|t Resource-Mediated Competition and Assembly --
|g 17.1.
|t Preparation --
|g 17.1.1.
|t Scaled vs. unscaled variables and parameters --
|g 17.1.2.
|t Mean-field vs framework theory --
|g 17.2.
|t Stochastic species packing under asymmetric competition --
|g 17.2.1.
|t Species richness and distribution of invasion fitness (Part I) --
|g 17.2.2.
|t Community response to invasion --
|g 17.2.3.
|t Sensitivity of residents to invaders --
|g 17.2.4.
|t Species richness and distribution of invasion fitness (Part II) --
|g 17.2.5.
|t Random walks of abundances driven by invasions --
|g 17.2.6.
|t Further discussion of the scenario --
|g 17.3.
|t Stochastic species packing with competition symmetry --
|g 17.3.1.
|t Community assembly with perfectly symmetric competition --
|g 17.3.2.
|t Community assembly under nearly perfectly symmetric competition --
|g 17.3.3.
|t Outline of mechanism limiting competition avoidance --
|g 17.3.4.
|t distribution of invasion fitness --
|g 17.3.5.
|t Competition between residents and invaders --
|g 17.3.6.
|t Balance of scaled biomass during assembly --
|g 17.3.7.
|t Competition avoidance --
|g 17.3.8.
|t Numerical test of the theory --
|g 18.
|t Random-Matrix Competition Theory --
|g 18.1.
|t Asymmetric competition --
|g 18.1.1.
|t Girko's Law --
|
505 |
0 |
0 |
|a Contents note continued:
|g 18.1.2.
|t Application to competitive overlap matrices --
|g 18.1.3.
|t Implications for sensitivity to invaders --
|g 18.1.4.
|t Relation to mean-field theory --
|g 18.2.
|t Stability vs feasibility limits to species richness --
|g 18.2.1.
|t result of May (1972) --
|g 18.2.2.
|t Comparison of stability and feasibility criteria --
|g 18.3.
|t Partially and fully symmetric competition --
|g 18.4.
|t Sparse overlap matrices --
|g 18.4.1.
|t Sparse competition --
|g 18.4.2.
|t Eigenvalue distributions for sparse matrices --
|g 18.5.
|t Resource overlap matrices --
|g 18.5.1.
|t Diffuse resource competition --
|g 18.5.2.
|t Sparse resource competition: the basic problem --
|g 18.5.3.
|t effect of trophic niche-space geometry --
|g 18.5.4.
|t Competition among highly specialized consumers --
|g 18.5.5.
|t Resource competition for varying ratios of producer to consumer richness --
|g 18.5.6.
|t Competition for competing resources --
|g 18.6.
|t Comparison with data --
|g 18.6.1.
|t Gall-inducing insects on plants --
|g 18.6.2.
|t Freshwater ecosystems --
|g 18.6.3.
|t North Sea --
|g 18.6.4.
|t Conclusions --
|g 19.
|t Species Richness, Size and Trophic Level --
|g 19.1.
|t Predator-prey mass ratios --
|g 19.2.
|t Modelling the joint distribution of size, trophic level, and species richness --
|g 19.2.1.
|t Initial considerations --
|g 19.2.2.
|t Model definition --
|g 19.2.3.
|t Model simulation and comparison with data --
|g 20.
|t Consumer-Mediated Competition and Assembly --
|g 20.1.
|t two-level food-web assembly model --
|g 20.2.
|t Analytic characterization of the model steady state --
|g 20.2.1.
|t Mechanism controlling producer richness --
|g 20.2.2.
|t Other characteristics of the model steady state --
|g 20.3.
|t Dependence of invader impacts on dietary diversity --
|g 20.3.1.
|t Formal setting --
|g 20.3.2.
|t Invadibility condition --
|g 20.3.3.
|t Extirpation of resources during invasion --
|g 20.3.4.
|t Extirpation of resources through consumer-mediated competition --
|g 20.3.5.
|t Synthesis --
|g 20.4.
|t Evolution of base attack rates --
|g 20.4.1.
|t Motivation --
|g 20.4.2.
|t Model definition --
|g 20.4.3.
|t Numerical demonstration of attack rate evolution --
|g 20.4.4.
|t Attack-rate evolution and prudent predation --
|g 21.
|t Food Chains and Size Spectra --
|g 21.1.
|t Concepts --
|g 21.1.1.
|t Community size spectra --
|g 21.1.2.
|t Species size spectra --
|g 21.2.
|t Power-law food chains --
|g 21.2.1.
|t Infinitely long power-law food chains --
|g 21.2.2.
|t Top-down and bottom-up control --
|g 21.2.3.
|t Power law-food chains of finite lengths and their stability to pulse perturbations --
|g 21.2.4.
|t Food chains as approximations for size spectra --
|g 21.2.5.
|t Adaptation of attack rates --
|g 21.3.
|t Food chains with non-linear functional responses --
|g 21.3.1.
|t Loss of stability with density-independent consumption --
|g 21.3.2.
|t Linearization of a generalized food chain model --
|g 21.3.3.
|t Linear responses to press perturbations --
|g 21.3.4.
|t Linear stability to pulse perturbations --
|g 21.4.
|t What are the mechanisms controlling the scaling laws? --
|g 21.4.1.
|t Arguments for biological constraints on transfer efficiency --
|g 21.4.2.
|t Arguments for stability constraints on transfer efficiency --
|g 21.4.3.
|t Arguments for ecological constraints on biomass imbalance --
|g 21.4.4.
|t Arguments for mechanical constraints on PPMR --
|g 21.4.5.
|t Arguments for dynamical constraints on PPMR --
|g 21.4.6.
|t Conclusions --
|g 21.5.
|t Scavengers and detrivores --
|g 21.5.1.
|t general argument --
|g 21.5.2.
|t microbial loop and other detrital channels --
|g 22.
|t Structure and Dynamics of PDMM Model Communities --
|g 22.1.
|t PDMM model definition --
|g 22.1.1.
|t Model states --
|g 22.1.2.
|t Species sampling and community assembly --
|g 22.1.3.
|t Population dynamics --
|g 22.2.
|t PDMM simulations --
|g 22.2.1.
|t Trophic niche space and phylogenetic correlations --
|g 22.2.2.
|t Steady state and invasion fitness --
|g 22.2.3.
|t Diet partitioning --
|g 22.2.4.
|t Resource-mediated competition --
|g 22.2.5.
|t Distribution of species over body sizes and trophic levels --
|g 22.2.6.
|t size spectrum and related distributions --
|g 22.3.
|t PDMM with evolving attack rates --
|g 22.3.1.
|t Modelling and tracking evolving attack rates in the PDMM --
|g 22.3.2.
|t Time series of species richness, aggressivity and dietary diversity --
|g 22.3.3.
|t Mutual regulation of aggressivity and dietary diversity --
|g 22.4.
|t Conclusions --
|g pt. IV
|t Implications --
|g 23.
|t Scientific Implications --
|g 23.1.
|t Main mechanisms identified by the theory --
|g 23.1.1.
|t Two trades - one currency --
|g 23.1.2.
|t Resource-mediated competition --
|g 23.1.3.
|t Randomness and structure in food webs --
|g 23.1.4.
|t Consumer-mediated competition and attack-rate evolution --
|g 23.2.
|t Testable assumptions and predictions --
|g 23.2.1.
|t Link-strength distributions and trophic niche-space geometry --
|g 23.2.2.
|t Diet-partitioning statistics and sampling curves --
|g 23.2.3.
|t Prey switching --
|g 23.2.4.
|t Adapted attack rates --
|g 23.2.5.
|t Community assembly and turnover --
|g 23.2.6.
|t Patterns in link-strength matrices --
|g 23.3.
|t Some unsolved problems --
|g 23.3.1.
|t Large plants --
|g 23.3.2.
|t Interactions between modes of competition --
|g 23.3.3.
|t Absolute species richness: the role of viruses --
|g 23.3.4.
|t role of prey switching for community structure --
|g 23.3.5.
|t role of phylogenetic correlations for community dynamics --
|g 23.3.6.
|t Fundamental constraints determining size-spectrum slopes --
|g 23.3.7.
|t Community assembly with non-trivial attractors --
|g 23.3.8.
|t Solution of the Riccati Equation for resource competition --
|g 23.3.9.
|t Eigenvalues of competition matrices --
|g 23.3.10.
|t Geometry and topology of trophic niche space --
|g 23.4.
|t future of community ecology --
|g 24.
|t Conservation Implications --
|g 24.1.
|t Assessing biodiversity --
|g 24.1.1.
|t Quantifying biodiversity --
|g 24.1.2.
|t Biodiversity supporting biodiversity --
|g 24.1.3.
|t Assessing community turnover --
|g 24.2.
|t Modelling ecological communities --
|g 24.2.1.
|t Unpredictability of long-term community responses --
|g 24.2.2.
|t Short-term predictions of community responses --
|g 24.2.3.
|t Coarse-grained and stochastic community models --
|g 24.3.
|t Managing biodiversity --
|t Appendix A --
|g A.1.
|t Mathematical concepts, formulae, and jargon --
|g A.1.1.
|t Sums --
|g A.1.2.
|t Complex numbers --
|g A.1.3.
|t Vectors and matrices --
|g A.1.4.
|t Sets and functions --
|g A.1.5.
|t Differential calculus --
|g A.1.6.
|t Integrals --
|g A.1.7.
|t Differential equations --
|g A.1.8.
|t Random variables and expectation values.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Biodiversity.
|
650 |
|
0 |
|a Food chains (Ecology)
|
650 |
|
0 |
|a Ecology
|x Mathematical models.
|
710 |
2 |
|
|a Ebooks Corporation
|
776 |
0 |
8 |
|i Print version:
|a Rossberg, Axel G., 1969-
|t Food webs and biodiversity.
|d Chichester, West Sussex, U.K ; Hoboken, N.J : Wiley Blackwell, 2013
|z 9780470973554
|w (DLC) 2013007309
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=1207851
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 1
|
907 |
|
|
|a .b26520497
|b 240604
|c 141204
|
998 |
|
|
|a uww
|b
|c m
|d z
|e y
|f eng
|g enk
|h 0
|
919 |
|
|
|a .ulebk
|b 2014-10-15
|
915 |
|
|
|a YBP DDA - Also in ProQuest Academic Complete
|
999 |
f |
f |
|i 62bb7698-c212-538c-a4bc-2d35638e5c83
|s 02254be7-445e-537b-9738-ab7c395c99da
|t 1
|