Interatomic Bonding in Solids : Fundamentals, Simulation, Applications /

Saved in:
Bibliographic Details
Main Author: Levitin, Valim
Corporate Author: Ebooks Corporation
Format: Electronic eBook
Language:English
Published: Weinheim : Wiley, [2014]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)

MARC

LEADER 00000nam a2200000Mi 4500
001 b2654639
003 CStclU
005 20140328093558.2
006 m o d
007 cr |n|||||||||
008 131214s2014 gw o 000 0 eng d
020 |a 9783527671571 
020 |a 3527671579 
035 |a (NhCcYBP)EBC1577464 
040 |a NhCcYBP  |c NhCcYBP 
050 4 |a QC176  |b .L48 2014 
082 0 4 |a 530.41  |2 23 
100 1 |a Levitin, Valim. 
245 1 0 |a Interatomic Bonding in Solids :  |b Fundamentals, Simulation, Applications /  |c Valim Levitin. 
260 |a Weinheim :  |b Wiley,  |c [2014] 
300 |a 1 online resource (xiii, 306 pages.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
533 |a Electronic reproduction.  |b Perth, W.A.  |n Available via World Wide Web. 
588 |a Description based on online resource; title from digital title page (viewed on March 28, 2014). 
505 0 0 |a Machine generated contents note:   |g 2.1.  |t Concepts of Quantum Physics --   |g 2.2.  |t Wave Motion --   |g 2.3.  |t Wave Function --   |g 2.4.  |t Schrödinger Wave Equation --   |g 2.5.  |t Electron in a Square Well: One-Dimensional Case --   |g 2.6.  |t Electron in a Potential Rectangular Box: k-Space --   |g 3.1.  |t Atomic Units --   |g 3.2.  |t One-Electron Atom: Quantum Numbers --   |g 3.3.  |t Multi-Electron Atoms --   |g 3.4.  |t Hartree Theory --   |g 3.5.  |t Results of the Hartree Theory --   |g 3.6.  |t Hartree-Fock Approximation --   |g 3.7.  |t Multi-Electron Atoms in the Mendeleev Periodic Table --   |g 3.8.  |t Diatomic Molecules --   |g 4.1.  |t Close-Packed Structures --   |g 4.2.  |t Some Examples of Crystal Structures --   |g 4.3.  |t Wigner-Seitz Cell --   |g 4.4.  |t Reciprocal Lattice --   |g 4.5.  |t Brillouin Zone --   |g 5.1.  |t Gas of Free Electrons --   |g 5.2.  |t Parameters of the Free-Electron Gas --   |g 5.3.  |t Notions Related to the Electron Gas --   |g 5.4.  |t Bulk Modulus --   |g 5.5.  |t Energy of Electrons --   |g 5.6.  |t Exchange Energy and Correlation Energy --   |g 5.7.  |t Low-Density Electron Gas: Wigner Lattice --   |g 5.8.  |t Near-Free Electron Approximation: Pseudopotentials --   |g 5.9.  |t Cohesive Energy of Simple Metals --   |g 6.1.  |t Bloch Waves --   |g 6.2.  |t One-Dimensional Kronig-Penney Model --   |g 6.3.  |t Band Theory --   |g 6.4.  |t General Band Structure: Energy Gaps --   |g 6.5.  |t Conductors, Semiconductors, and Insulators --   |g 6.6.  |t Classes of Solids --   |g 7.1.  |t Elastic Constants --   |g 7.2.  |t Volume and Pressure as Fundamental Variables: Bulk Modulus --   |g 7.3.  |t Amplitude of Lattice Vibration --   |g 7.4.  |t Debye Temperature --   |g 7.5.  |t Melting Temperature --   |g 7.6.  |t Cohesive Energy --   |g 7.7.  |t Energy of Vacancy Formation and Surface Energy --   |g 7.8.  |t Stress-Strain Properties in Engineering --   |g 8.1.  |t Many-Body Problem: Fundamentals --   |g 8.2.  |t Milestones in Solution of the Many-Body Problem --   |g 8.3.  |t More of the Hartree and Hartree-Fock Approximations --   |g 8.4.  |t Density Functional Theory --   |g 8.5.  |t Kohn-Sham Auxiliary System of Equations --   |g 8.6.  |t Exchange-Correlation Functional --   |g 8.7.  |t Plane Wave Pseudopotential Method --   |g 8.8.  |t Iterative Minimization Technique for Total Energy Calculations --   |g 8.9.  |t Linearized Augmented Plane Wave Method --   |g 9.1.  |t Strength Characteristics of Solids --   |g 9.2.  |t Energy of Vacancy Formation --   |g 9.3.  |t Density of States --   |g 9.4.  |t Properties of Intermetallic Compounds --   |g 9.5.  |t Structure, Electron Bands, and Superconductivity of MgB2 --   |g 9.6.  |t Embrittlement of Metals by Trace Impurities --   |g 10.1.  |t Phases in Superalloys --   |g 10.2.  |t Mean-Square Amplitudes of Atomic Vibrations in γ'-based Phases --   |g 10.3.  |t Simulation of the Intermetallic Phases --   |g 10.4.  |t Electron Density --   |g 11.1.  |t Tight-Binding Approximation --   |g 11.2.  |t Procedure of Calculations --   |g 11.3.  |t Applications of the Tight-Binding Method --   |g 11.4.  |t Environment-Dependent Tight-Binding Potential Models --   |g 11.5.  |t Embedded-Atom Potentials --   |g 11.6.  |t Embedding Function --   |g 11.7.  |t Interatomic Pair Potentials --   |g 12.1.  |t Dispersion Curves and the Born-von Karman Constants --   |g 12.2.  |t Fourier Transformation of Dispersion Curves: Interplanar Force Constants --   |g 12.3.  |t Group Velocity of the Lattice Waves --   |g 12.4.  |t Vibration Frequencies and the Total Energy --   |g 13.1.  |t Cohesive Energy --   |g 13.2.  |t Rectangular d Band Model of Cohesion --   |g 13.3.  |t Electronic Structure --   |g 13.4.  |t Crystal Structures --   |g 13.5.  |t Binary Intermetallic Phases --   |g 13.6.  |t Vibrational Contribution to Structure --   |g 14.1.  |t Strength and Fracture --   |g 14.2.  |t Fracture Processes in Silicon --   |g 14.3.  |t Graphene --   |g 14.4.  |t Nanomaterials --   |g 15.1.  |t Interaction of Dipoles: The van der Waals Bond --   |g 15.2.  |t Hydrogen Bond --   |g 15.3.  |t Structure and Strength of Ice --   |g 15.4.  |t Solid Noble Gases --   |g 15.5.  |t Cohesive Energy Calculation for Noble Gas Solids --   |g 15.6.  |t Organic Molecular Crystals --   |g 15.7.  |t Molecule-Based Networks --   |g 15.8.  |t Ionic Compounds --   |g 16.1.  |t Experimental Data: Evolution of Structural Parameters --   |g 16.2.  |t Physical Model --   |g 16.3.  |t Equations to the Model --   |g 16.4.  |t Comparison with the Experimental Data --   |g 17.1.  |t Crack Initiation --   |g 17.2.  |t Periods of Fatigue-Crack Propagation --   |g 17.3.  |t Fatigue Failure at Atomic Level --   |g 17.4.  |t Rupture of Interatomic Bonding at the Crack Tip --   |g 18.1.  |t System of Differential Equations --   |g 18.2.  |t Crack Propagation --   |g 18.3.  |t Parameters to Be Studied --   |g 18.4.  |t Results. 
650 0 |a Solids. 
650 0 |a Chemical bonds. 
650 0 |a Density functionals  |x Computer simulation. 
650 0 |a Materials science  |x Computer simulation. 
710 2 |a Ebooks Corporation 
776 0 8 |i Print version:  |a Levitin, Valim.  |t Interatomic Bonding in Solids : Fundamentals, Simulation, Applications.  |d Hoboken : Wiley, ©2013  |z 9783527335077 
856 4 0 |u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=1577464  |z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)  |t 1 
907 |a .b26546395  |b 240604  |c 141204 
998 |a uww  |b    |c m  |d z   |e y  |f eng  |g gw   |h 0 
919 |a .ulebk  |b 2014-10-15 
915 |a YBP DDA - Also in ProQuest Academic Complete 
999 f f |i 8c559479-2444-507a-a6b0-0bfaf4c4c32f  |s d3f9dd9c-2e82-5597-8219-75afe2705502  |t 1