Interatomic Bonding in Solids : Fundamentals, Simulation, Applications /
Saved in:
Main Author: | |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Weinheim :
Wiley,
[2014]
|
Subjects: | |
Online Access: | Connect to this title online (unlimited simultaneous users allowed; 325 uses per year) |
Table of Contents:
- Machine generated contents note: 2.1. Concepts of Quantum Physics
- 2.2. Wave Motion
- 2.3. Wave Function
- 2.4. Schrödinger Wave Equation
- 2.5. Electron in a Square Well: One-Dimensional Case
- 2.6. Electron in a Potential Rectangular Box: k-Space
- 3.1. Atomic Units
- 3.2. One-Electron Atom: Quantum Numbers
- 3.3. Multi-Electron Atoms
- 3.4. Hartree Theory
- 3.5. Results of the Hartree Theory
- 3.6. Hartree-Fock Approximation
- 3.7. Multi-Electron Atoms in the Mendeleev Periodic Table
- 3.8. Diatomic Molecules
- 4.1. Close-Packed Structures
- 4.2. Some Examples of Crystal Structures
- 4.3. Wigner-Seitz Cell
- 4.4. Reciprocal Lattice
- 4.5. Brillouin Zone
- 5.1. Gas of Free Electrons
- 5.2. Parameters of the Free-Electron Gas
- 5.3. Notions Related to the Electron Gas
- 5.4. Bulk Modulus
- 5.5. Energy of Electrons
- 5.6. Exchange Energy and Correlation Energy
- 5.7. Low-Density Electron Gas: Wigner Lattice
- 5.8. Near-Free Electron Approximation: Pseudopotentials
- 5.9. Cohesive Energy of Simple Metals
- 6.1. Bloch Waves
- 6.2. One-Dimensional Kronig-Penney Model
- 6.3. Band Theory
- 6.4. General Band Structure: Energy Gaps
- 6.5. Conductors, Semiconductors, and Insulators
- 6.6. Classes of Solids
- 7.1. Elastic Constants
- 7.2. Volume and Pressure as Fundamental Variables: Bulk Modulus
- 7.3. Amplitude of Lattice Vibration
- 7.4. Debye Temperature
- 7.5. Melting Temperature
- 7.6. Cohesive Energy
- 7.7. Energy of Vacancy Formation and Surface Energy
- 7.8. Stress-Strain Properties in Engineering
- 8.1. Many-Body Problem: Fundamentals
- 8.2. Milestones in Solution of the Many-Body Problem
- 8.3. More of the Hartree and Hartree-Fock Approximations
- 8.4. Density Functional Theory
- 8.5. Kohn-Sham Auxiliary System of Equations
- 8.6. Exchange-Correlation Functional
- 8.7. Plane Wave Pseudopotential Method
- 8.8. Iterative Minimization Technique for Total Energy Calculations
- 8.9. Linearized Augmented Plane Wave Method
- 9.1. Strength Characteristics of Solids
- 9.2. Energy of Vacancy Formation
- 9.3. Density of States
- 9.4. Properties of Intermetallic Compounds
- 9.5. Structure, Electron Bands, and Superconductivity of MgB2
- 9.6. Embrittlement of Metals by Trace Impurities
- 10.1. Phases in Superalloys
- 10.2. Mean-Square Amplitudes of Atomic Vibrations in γ'-based Phases
- 10.3. Simulation of the Intermetallic Phases
- 10.4. Electron Density
- 11.1. Tight-Binding Approximation
- 11.2. Procedure of Calculations
- 11.3. Applications of the Tight-Binding Method
- 11.4. Environment-Dependent Tight-Binding Potential Models
- 11.5. Embedded-Atom Potentials
- 11.6. Embedding Function
- 11.7. Interatomic Pair Potentials
- 12.1. Dispersion Curves and the Born-von Karman Constants
- 12.2. Fourier Transformation of Dispersion Curves: Interplanar Force Constants
- 12.3. Group Velocity of the Lattice Waves
- 12.4. Vibration Frequencies and the Total Energy
- 13.1. Cohesive Energy
- 13.2. Rectangular d Band Model of Cohesion
- 13.3. Electronic Structure
- 13.4. Crystal Structures
- 13.5. Binary Intermetallic Phases
- 13.6. Vibrational Contribution to Structure
- 14.1. Strength and Fracture
- 14.2. Fracture Processes in Silicon
- 14.3. Graphene
- 14.4. Nanomaterials
- 15.1. Interaction of Dipoles: The van der Waals Bond
- 15.2. Hydrogen Bond
- 15.3. Structure and Strength of Ice
- 15.4. Solid Noble Gases
- 15.5. Cohesive Energy Calculation for Noble Gas Solids
- 15.6. Organic Molecular Crystals
- 15.7. Molecule-Based Networks
- 15.8. Ionic Compounds
- 16.1. Experimental Data: Evolution of Structural Parameters
- 16.2. Physical Model
- 16.3. Equations to the Model
- 16.4. Comparison with the Experimental Data
- 17.1. Crack Initiation
- 17.2. Periods of Fatigue-Crack Propagation
- 17.3. Fatigue Failure at Atomic Level
- 17.4. Rupture of Interatomic Bonding at the Crack Tip
- 18.1. System of Differential Equations
- 18.2. Crack Propagation
- 18.3. Parameters to Be Studied
- 18.4. Results.