Interatomic Bonding in Solids : Fundamentals, Simulation, Applications /

Saved in:
Bibliographic Details
Main Author: Levitin, Valim
Corporate Author: Ebooks Corporation
Format: Electronic eBook
Language:English
Published: Weinheim : Wiley, [2014]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 2.1. Concepts of Quantum Physics
  • 2.2. Wave Motion
  • 2.3. Wave Function
  • 2.4. Schrödinger Wave Equation
  • 2.5. Electron in a Square Well: One-Dimensional Case
  • 2.6. Electron in a Potential Rectangular Box: k-Space
  • 3.1. Atomic Units
  • 3.2. One-Electron Atom: Quantum Numbers
  • 3.3. Multi-Electron Atoms
  • 3.4. Hartree Theory
  • 3.5. Results of the Hartree Theory
  • 3.6. Hartree-Fock Approximation
  • 3.7. Multi-Electron Atoms in the Mendeleev Periodic Table
  • 3.8. Diatomic Molecules
  • 4.1. Close-Packed Structures
  • 4.2. Some Examples of Crystal Structures
  • 4.3. Wigner-Seitz Cell
  • 4.4. Reciprocal Lattice
  • 4.5. Brillouin Zone
  • 5.1. Gas of Free Electrons
  • 5.2. Parameters of the Free-Electron Gas
  • 5.3. Notions Related to the Electron Gas
  • 5.4. Bulk Modulus
  • 5.5. Energy of Electrons
  • 5.6. Exchange Energy and Correlation Energy
  • 5.7. Low-Density Electron Gas: Wigner Lattice
  • 5.8. Near-Free Electron Approximation: Pseudopotentials
  • 5.9. Cohesive Energy of Simple Metals
  • 6.1. Bloch Waves
  • 6.2. One-Dimensional Kronig-Penney Model
  • 6.3. Band Theory
  • 6.4. General Band Structure: Energy Gaps
  • 6.5. Conductors, Semiconductors, and Insulators
  • 6.6. Classes of Solids
  • 7.1. Elastic Constants
  • 7.2. Volume and Pressure as Fundamental Variables: Bulk Modulus
  • 7.3. Amplitude of Lattice Vibration
  • 7.4. Debye Temperature
  • 7.5. Melting Temperature
  • 7.6. Cohesive Energy
  • 7.7. Energy of Vacancy Formation and Surface Energy
  • 7.8. Stress-Strain Properties in Engineering
  • 8.1. Many-Body Problem: Fundamentals
  • 8.2. Milestones in Solution of the Many-Body Problem
  • 8.3. More of the Hartree and Hartree-Fock Approximations
  • 8.4. Density Functional Theory
  • 8.5. Kohn-Sham Auxiliary System of Equations
  • 8.6. Exchange-Correlation Functional
  • 8.7. Plane Wave Pseudopotential Method
  • 8.8. Iterative Minimization Technique for Total Energy Calculations
  • 8.9. Linearized Augmented Plane Wave Method
  • 9.1. Strength Characteristics of Solids
  • 9.2. Energy of Vacancy Formation
  • 9.3. Density of States
  • 9.4. Properties of Intermetallic Compounds
  • 9.5. Structure, Electron Bands, and Superconductivity of MgB2
  • 9.6. Embrittlement of Metals by Trace Impurities
  • 10.1. Phases in Superalloys
  • 10.2. Mean-Square Amplitudes of Atomic Vibrations in γ'-based Phases
  • 10.3. Simulation of the Intermetallic Phases
  • 10.4. Electron Density
  • 11.1. Tight-Binding Approximation
  • 11.2. Procedure of Calculations
  • 11.3. Applications of the Tight-Binding Method
  • 11.4. Environment-Dependent Tight-Binding Potential Models
  • 11.5. Embedded-Atom Potentials
  • 11.6. Embedding Function
  • 11.7. Interatomic Pair Potentials
  • 12.1. Dispersion Curves and the Born-von Karman Constants
  • 12.2. Fourier Transformation of Dispersion Curves: Interplanar Force Constants
  • 12.3. Group Velocity of the Lattice Waves
  • 12.4. Vibration Frequencies and the Total Energy
  • 13.1. Cohesive Energy
  • 13.2. Rectangular d Band Model of Cohesion
  • 13.3. Electronic Structure
  • 13.4. Crystal Structures
  • 13.5. Binary Intermetallic Phases
  • 13.6. Vibrational Contribution to Structure
  • 14.1. Strength and Fracture
  • 14.2. Fracture Processes in Silicon
  • 14.3. Graphene
  • 14.4. Nanomaterials
  • 15.1. Interaction of Dipoles: The van der Waals Bond
  • 15.2. Hydrogen Bond
  • 15.3. Structure and Strength of Ice
  • 15.4. Solid Noble Gases
  • 15.5. Cohesive Energy Calculation for Noble Gas Solids
  • 15.6. Organic Molecular Crystals
  • 15.7. Molecule-Based Networks
  • 15.8. Ionic Compounds
  • 16.1. Experimental Data: Evolution of Structural Parameters
  • 16.2. Physical Model
  • 16.3. Equations to the Model
  • 16.4. Comparison with the Experimental Data
  • 17.1. Crack Initiation
  • 17.2. Periods of Fatigue-Crack Propagation
  • 17.3. Fatigue Failure at Atomic Level
  • 17.4. Rupture of Interatomic Bonding at the Crack Tip
  • 18.1. System of Differential Equations
  • 18.2. Crack Propagation
  • 18.3. Parameters to Be Studied
  • 18.4. Results.