Nonlinear physical systems : spectral analysis, stability and bifurcations /

Saved in:
Bibliographic Details
Corporate Author: Ebooks Corporation
Format: Electronic eBook
Language:English
Published: London : Hoboken, NJ : ISTE ; Wiley, 2014.
Series:Mechanical engineering and solid mechanics series.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: ch. 1 Surprising Instabilities of Simple Elastic Structures / Daniele Zaccaria
  • 1.1. Introduction
  • 1.2. Buckling in tension
  • 1.3. effect of constraint's curvature
  • 1.4. Ziegler pendulum made unstable by Coulomb friction
  • 1.5. Conclusions
  • 1.6. Acknowledgments
  • 1.7. Bibliography
  • ch. 2 WKB Solutions Near an Unstable Equilibrium and Applications / Maher Zerzeri
  • 2.1. Introduction
  • 2.2. Connection of microlocal solutions near a hyperbolic fixed point
  • 2.2.1. model in one dimension
  • 2.2.2. Classical mechanics
  • 2.2.3. Review of semi-classical microlocal analysis
  • 2.2.4. microlocal Cauchy problem - uniqueness
  • 2.2.5. microlocal Cauchy problem - transition operator
  • 2.3. Applications to semi-classical resonances
  • 2.3.1. Spectral projection and Schrodinger group
  • 2.3.2. Resonance-free zone for homoclinic trajectories
  • 2.4. Acknowledgment
  • 2.5. Bibliography
  • ch. 3 Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems / Dimitrii Sadovskii
  • 3.1. Statement of problem
  • 3.2. Bifurcation values of γ
  • 3.3. Versal normal forms near the bifurcation values
  • 3.3.1. Normal forms
  • 3.3.2. Linear Hamiltonian Hopf bifurcation γ±
  • 3.3.3. Switch twist bifurcation at γ+
  • 3.3.4. Sign exchange bifurcation
  • 3.4. Infinitesimally symplectic normal form
  • 3.4.1. Normal form of Xγ at γ±
  • 3.4.2. Normal form of Xγ at γ±
  • 3.5. Global issues
  • 3.5.1. Invariant Lagrange planes
  • 3.5.2. Symplectic signs
  • 3.6. Bibliography
  • ch. 4 Dissipation Effect on Local and Global Fluid-Elastic Instabilities / Olivier Doare
  • 4.1. Introduction
  • 4.2. Local and global stability analyses
  • 4.2.1. Local analysis
  • 4.2.2. Global analysis
  • 4.3. fluid-conveying pipe: a model problem
  • 4.4. Effect of damping on the local and global stability of the fluid-conveying pipe
  • 4.4.1. Local stability
  • 4.4.2. Global stability
  • 4.5. Application to energy harvesting
  • 4.6. Conclusion
  • 4.7. Bibliography
  • ch. 5 Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field / Anatoly Y. Anikin
  • 5.1. Introduction
  • 5.2. 1D Landau-Lifshitz splitting formula and its analog for the ground states
  • 5.3. splitting formula in multi-dimensional case
  • 5.4. Normal forms and complex Lagrangian manifolds
  • 5.4.1. Normal form in the classically allowed and forbidden regions
  • 5.4.2. Complex continuation of integrals
  • 5.4.3. Almost invariant complex Lagrangian manifolds
  • 5.5. Constructing the asymptotics for the eigenfunctions in tunnel problems
  • 5.5.1. Complex WKB-method
  • 5.5.2. WKB-methods with real and pure imaginary phases
  • 5.5.3. Variational methods
  • 5.6. Splitting of the eigenvalues in the presence of magnetic field
  • 5.7. Proof of main theorem (a sketch)
  • 5.7.1. Lifshitz-Herring formula
  • 5.7.2. Instanton splitting formula
  • 5.7.3. Asymptotic behavior of the libration action
  • 5.7.4. Reduction to the 1D splitting problem
  • 5.7.5. Asymptotic behavior of the Floquet exponents
  • 5.7.6. Finishing the proof
  • 5.8. Conclusion
  • 5.9. Acknowledgments
  • 5.10. Bibliography
  • ch. 6 Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials / Boris A. Malomed
  • 6.1. Introduction
  • 6.2. model
  • 6.3. Solitons in the first bandgap: the SF nonlinearity
  • 6.3.1. Solution families
  • 6.3.2. Stability of solitons in the first finite bandgap
  • 6.3.3. Bound states of solitons in the first bandgap
  • 6.4. Stability GSs in the second bandgap
  • 6.5. Conclusions
  • 6.6. Bibliography
  • ch. 7 Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation / Youichi Mie
  • 7.1. Introduction
  • 7.2. Lagrangian approach to wave energy
  • 7.3. Kelvin waves
  • 7.4. Wave energy in terms of the dispersion relation
  • 7.5. Conclusion
  • 7.6. Bibliography
  • ch. 8 Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance / Oleg N. Kirillov
  • 8.1. Introduction
  • 8.1.1. Physical motivation
  • 8.1.2. Setting
  • 8.1.3. Main question and examples
  • 8.2. Methods
  • 8.2.1. Centralizer unfolding
  • 8.2.2. Stability domain
  • 8.2.3. Mapping into the centralizer unfolding
  • 8.3. Examples
  • 8.3.1. Modulation instability
  • 8.3.2. Non-conservative gyroscopic system
  • 8.4. Conclusions
  • 8.5. Bibliography
  • ch. 9 Index Theorems for Polynomial Pencils / Radomir Bosak
  • 9.1. Introduction
  • 9.2. Krein signature
  • 9.3. Index theorems for linear pencils and linearized Hamiltonians
  • 9.4. Graphical interpretation of index theorems
  • 9.4.1. Algebraic calculation of Z and Z
  • 9.5. Conclusions
  • 9.6. Acknowledgments
  • 9.7. Bibliography
  • ch. 10 Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches / Charles H.K. Williamson
  • 10.1. Introduction
  • 10.2. Counting positive-energy modes from IVI diagrams
  • 10.3. approximate prediction for the onset of resonance in 2D vortices
  • 10.4. example: three corotating vortices
  • 10.4.1. Building a family of solutions from vorticity-preserving rearrangements
  • 10.4.2. Computing signatures for one member of the family
  • 10.4.3. velocity-impulse diagram
  • 10.4.4. Uncovering bifurcations by introducing imperfections
  • 10.4.5. Counting positive-energy modes from turning points in impulse
  • 10.4.6. Recovering the underlying bifurcation structure
  • 10.4.7. approximate prediction for resonance
  • 10.5. Comparison with exact eigenvalues and discussion
  • 10.6. Conclusions
  • 10.7. Bibliography
  • ch. 11 Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows / Sherwin A. Maslowe
  • 11.1. Introduction
  • 11.2. Wave packets
  • 11.2.1. Conservative systems
  • 11.2.2. Applications to hydrodynamic stability
  • 11.2.3. Ginzburg-Landau equation
  • 11.3. Critical layer theory
  • 11.3.1. Asymptotic theory of the Orr-Sommerfeld equation
  • 11.3.2. Nonlinear critical layers
  • 11.3.3. wave packet critical layer
  • 11.4. Nonlinear instabilities governed by integro-differential equations
  • 11.4.1. zonal wave packet critical layer
  • 11.5. Concluding remarks
  • 11.6. Bibliography
  • ch. 12 Continuum Hamiltonian Hopf Bifurcation I / George I. Hagstrom
  • 12.1. Introduction
  • 12.2. Discrete Hamiltonian bifurcations
  • 12.2.1. class of 1 + 1 Hamiltonian multifluid theories
  • 12.2.2. Examples
  • 12.2.3. Comparison and commentary
  • 12.3. Continuum Hamiltonian bifurcations
  • 12.3.1. class of 2 + 1 Hamiltonian mean field theories
  • 12.3.2. Example of the CHH bifurcation
  • 12.4. Summary and conclusions
  • 12.5. Acknowledgments
  • 12.6. Bibliography
  • ch. 13 Continuum Hamiltonian Hopf Bifurcation II / Philip J. Morrison
  • 13.1. Introduction
  • 13.2. Mathematical aspects of the continuum Hamiltonian Hopf bifurcation
  • 13.2.1. Structural stability
  • 13.2.2. Normal forms and signature
  • 13.3. Application to Vlasov-Poisson
  • 13.3.1. Structural stability in the space Cn (R) [∩]L1 (R)
  • 13.3.2. Structural stability in W1'1
  • 13.3.3. Dynamical accessibility and structural stability
  • 13.4. Canonical infinite-dimensional case
  • 13.4.1. Negative energy oscillator coupled to a heat bath
  • 13.5. Commentary: degeneracy and nonlinearity
  • 13.6. Summary and conclusions
  • 13.7. Acknowledgments
  • 13.8. Bibliography
  • ch. 14 Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model / Cesare Tronci
  • 14.1. Introduction
  • 14.2. Stability and the energy-Casimir method
  • 14.3. Planar Hamiltonian hybrid model
  • 14.3.1. Planar hybrid model equations of motion
  • 14.3.2. Hamiltonian structure
  • 14.3.3. Casimir invariants
  • 14.4. Energy-Casimir stability analysis
  • 14.4.1. Equilibrium variational principle
  • 14.4.2. Stability conditions
  • 14.5. Conclusions
  • 14.6. Acknowledgments
  • 14.7. Appendix A: derivation of hybrid Hamiltonian structure
  • 14.8. Appendix B: Casimir verification
  • 14.9. Bibliography
  • ch. 15 Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators / Francis Nier
  • 15.1. Introduction
  • 15.2. Relevant quantities for sectorial operators
  • 15.3. Natural examples
  • 15.3.1. example related to linearized equations of fluid mechanics
  • 15.3.2. Kramers-Fokker-Planck operators
  • 15.4. Artificial examples
  • 15.4.1. Adiabatic evolution of quantum resonances in the one-dimensional case
  • 15.4.2. Optimizing the sampling of equilibrium distributions
  • 15.5. Conclusion
  • 15.6. Bibliography
  • ch. 16 Stability Optimization for Polynomials and Matrices / Michael L. Overton
  • 16.1. Optimization of roots of polynomials
  • 16.1.1. Root optimization over a polynomial family with a single affine constraint
  • 16.1.2. root radius
  • 16.1.3. root abscissa
  • 16.1.4. Examples
  • 16.1.5. Polynomial root optimization with several affine constraints
  • 16.1.6. Variational analysis of the root radius and abscissa
  • 16.1.7. Computing the root radius and abscissa
  • 16.2. Optimization of eigenvalues of matrices
  • 16.2.1. Static output feedback
  • 16.2.2. Numerical methods for non-smooth optimization
  • 16.2.3. Numerical results for some SOF problems
  • 16.2.4. Diaconis-Holmes-Neal Markov chain
  • 16.2.5. Active derogatory eigenvalues
  • 16.3. Concluding remarks
  • 16.4. Acknowledgments
  • 16.5. Bibliography
  • Contents note continued: ch. 17 Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations / Dmitry E. Pelinovsky
  • 17.1. Introduction
  • 17.2. Historical remarks and examples
  • 17.3. Proof of theorem 17.1
  • 17.4. Generalization of theorem 17.1 for a periodic nonlinear wave
  • 17.5. Conclusion
  • 17.6. Bibliography
  • ch. 18 Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities / Philip J. Morrison
  • 18.1. Introduction
  • 18.2. Preliminaries: noncanonical Hamiltonian systems and Casimir invariants
  • 18.3. Foliation by adiabatic invariants
  • 18.4. Canonization atop Casimir leaves
  • 18.4.1. Extension of the phase space and canonization
  • 18.4.2. "Minimum" canonization invoking Casimir invariants
  • 18.5. Application to tearing-mode theory
  • 18.5.1. Helicity and Beltrami equilibria
  • 18.5.2. Tearing-mode instability
  • 18.6. Conclusion
  • 18.7. Acknowledgments
  • 18.8. Bibliography.