Acoustic particle velocity measurements using lasers : principles, signal processing and applications /

Saved in:
Bibliographic Details
Main Author: Valière, Jean-Christophe (Author)
Corporate Author: Ebooks Corporation
Format: Electronic eBook
Language:English
Published: London, UK : Hoboken, NJ : ISTE ; Wiley, 2014.
Series:Focus series in waves.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1.1. Basic equations
  • 1.1.1. Fluid- and thermodynamics
  • 1.1.2. Hypothesis of linear acoustics without losses
  • 1.2. Acoustic equations
  • 1.2.1. Linear acoustic equations with sources
  • 1.2.2. Some remarks on acoustic sources
  • 1.2.3. Without sources
  • 1.2.4. Acoustic intensity and source power
  • 1.2.5. Acoustic impedance and border conditions
  • 1.3. Constants, units and magnitude orders of linear acoustics
  • 1.4. Acoustic velocity measurement and applications
  • 1.4.1. Velocity estimation from pressure gradient
  • 1.4.2. Intensity estimation
  • 1.4.3. Application to impedance estimation
  • 1.5. Beyond linear equations
  • 1.5.1. Acoustic equations with mean flow
  • 1.5.2. High acoustic displacement
  • 1.5.3. Acoustic streaming
  • 1.6. Bibliography
  • 2.1. Measurement signal
  • 2.1.1. Random signals
  • 2.1.2. Statistical averages
  • 2.1.3. Time averages
  • 2.1.4. Acoustic signal model
  • 2.2. Reminder of Fourier analysis tools
  • 2.2.1. Fourier transform
  • 2.2.2. Uniform sampling and recovery of signals
  • 2.2.3. Fourier transform of discrete signals
  • 2.2.4. Discrete Fourier transform
  • 2.3. Correlations and spectra
  • 2.3.1. Definitions
  • 2.3.2. Stationary and ergodic process
  • 2.3.3. Properties of correlation functions and examples
  • 2.3.4. PSD and cross-spectral density properties
  • 2.4. Basis of estimation theory
  • 2.4.1. Definition and properties of an estimation method
  • 2.4.2. Mean estimator
  • 2.4.3. Correlation estimators
  • 2.4.4. Spectrum estimators
  • 2.4.5. Spectrum estimator by synchronous detection approach
  • 2.5. Non-uniform sampling
  • 2.5.1. Poisson processes
  • 2.5.2. Empirical estimators
  • 2.5.3. Comparison of spectrum estimation of random sampling sequences
  • 2.6. Bibliography
  • 2.7. Appendix
  • 2.7.1. Properties of the Fourier transform
  • 2.7.2. Fourier transforms of typical functions
  • 2.7.3. Properties of the discrete Fourier transform (DFT)
  • 3.1. Bases of LDV
  • 3.1.1. Optical principles
  • 3.1.2. Signal processing of burst analyses in the context of fluid mechanics
  • 3.2. Models for acoustics
  • 3.2.1. Model of the Doppler signal
  • 3.2.2. Model of the sampling in the context of acoustics
  • 3.2.3. Case of low acoustic displacement with few mean flows
  • 3.2.4. Case of high acoustic displacement with few mean flows
  • 3.2.5. Other cases
  • 3.3. Estimation method for low acoustic displacement
  • 3.3.1. Theoretical limitations
  • 3.3.2. Estimation methods based on IF detection
  • 3.3.3. Estimation based on parametrical models
  • 3.3.4. Simultaneous detection of flow velocity and small acoustic velocity
  • 3.3.5. Comparison between methods for low-level acoustics
  • 3.4. Estimation method for high displacement
  • 3.4.1. Experimental condition
  • 3.4.2. Theoretical limitations
  • 3.4.3. Estimation for SPP
  • 3.4.4. Estimation for highly NSPP
  • 3.5. Bibliography
  • 4.1. Principle of PIV
  • 4.1.1. Setting up
  • 4.1.2. Model of the 2D signal and image processing
  • 4.1.3. Postprocessing adapted for acoustic measurement
  • 4.2. Validity domain concerning PIV for acoustic
  • 4.2.1. Lower bound inspired by fluid measurement approach
  • 4.2.2. Lower bound in case of linear acoustics
  • 4.3. Examples and comparisons
  • 4.3.1. Acoustic measurement
  • 4.3.2. Acoustic streaming measurement
  • 4.4. Bibliography.