|
|
|
|
LEADER |
00000nam a2200000Ii 4500 |
001 |
b2656987 |
003 |
CStclU |
005 |
20141029071022.8 |
006 |
m o d |
007 |
cr mn| |
008 |
140623t20142014nju ob 001 0 eng d |
020 |
|
|
|a 9781400852741
|q electronic bk.
|
020 |
|
|
|a 1400852749
|q electronic bk.
|
020 |
|
|
|z 9781306883382
|
020 |
|
|
|z 1306883385
|
020 |
|
|
|z 9780691161853
|q (hardcover)
|
020 |
|
|
|z 0691161852
|q (hardcover)
|
035 |
|
|
|a (NhCcYBP)EBC1689375
|
037 |
|
|
|a 22573/ctt6t46t1
|b JSTOR
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a QA196
|b .R63 2014
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
072 |
|
7 |
|a MAT040000
|2 bisacsh
|
072 |
|
7 |
|a TEC009000
|2 bisacsh
|
072 |
|
7 |
|a SCI055000
|2 bisacsh
|
072 |
|
7 |
|a MAT005000
|2 bisacsh
|
072 |
|
7 |
|a COM014000
|2 bisacsh
|
072 |
|
7 |
|a MAT002050
|2 bisacsh
|
082 |
0 |
4 |
|a 512.5
|2 22
|
100 |
1 |
|
|a Rodman, L.,
|e author.
|
245 |
1 |
0 |
|a Topics in quaternion linear algebra /
|c Leiba Rodman.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (xii, 363 pages.)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Princeton series in applied mathematics
|
533 |
|
|
|a Electronic reproduction.
|b Perth, W.A.
|n Available via World Wide Web.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Introduction --
|g 1.1.
|t Notation and conventions --
|g 1.2.
|t Standard matrices --
|g 2.
|t algebra of quaternions --
|g 2.1.
|t Basic definitions and properties --
|g 2.2.
|t Real linear transformations and equations --
|g 2.3.
|t Sylvester equation --
|g 2.4.
|t Automorphisms and involutions --
|g 2.5.
|t Quadratic maps --
|g 2.6.
|t Real and complex matrix representations --
|g 2.7.
|t Exercises --
|g 2.8.
|t Notes --
|g 3.
|t Vector spaces and matrices: Basic theory --
|g 3.1.
|t Finite dimensional quaternion vector spaces --
|g 3.2.
|t Matrix algebra --
|g 3.3.
|t Real matrix representation of quaternions --
|g 3.4.
|t Complex matrix representation of quaternions --
|g 3.5.
|t Numerical ranges with respect to conjugation --
|g 3.6.
|t Matrix decompositions: nonstandard involutions --
|g 3.7.
|t Numerical ranges with respect to nonstandard involutions --
|g 3.8.
|t Proof of Theorem 3.7.5 --
|g 3.9.
|t metric space of subspaces --
|g 3.10.
|t Appendix: Multivariable real analysis --
|g 3.11.
|t Exercises --
|g 3.12.
|t Notes --
|g 4.
|t Symmetric matrices and congruence --
|g 4.1.
|t Canonical forms under congruence --
|g 4.2.
|t Neutral and semidefinite subspaces --
|g 4.3.
|t Proof of Theorem 4.2.6 --
|g 4.4.
|t Proof of Theorem 4.2.7 --
|g 4.5.
|t Representation of semidefinite subspaces --
|g 4.6.
|t Exercises --
|g 4.7.
|t Notes --
|g 5.
|t Invariant subspaces and Jordan form --
|g 5.1.
|t Root subspaces --
|g 5.2.
|t Root subspaces and matrix representations --
|g 5.3.
|t Eigenvalues and eigenvectors --
|g 5.4.
|t Some properties of Jordan blocks --
|g 5.5.
|t Jordan form --
|g 5.6.
|t Proof of Theorem 5.5.3 --
|g 5.7.
|t Jordan forms of matrix representations --
|g 5.8.
|t Comparison with real and complex similarity --
|g 5.9.
|t Determinants --
|g 5.10.
|t Determinants based on real matrix representations --
|g 5.11.
|t Linear matrix equations --
|g 5.12.
|t Companion matrices and polynomial equations --
|g 5.13.
|t Eigenvalues of hermitian matrices --
|g 5.14.
|t Differential and difference equations --
|g 5.15.
|t Appendix: Continuous roots of polynomials --
|g 5.16.
|t Exercises --
|g 5.17.
|t Notes --
|g 6.
|t Invariant neutral and semidefinite subspaces --
|g 6.1.
|t Structured matrices and invariant neutral subspaces --
|g 6.2.
|t Invariant semidefinite subspaces respecting conjugation --
|g 6.3.
|t Proof of Theorem 6.2.6 --
|g 6.4.
|t Unitary, dissipative, and expansive matrices --
|g 6.5.
|t Invariant semidefinite subspaces: Nonstandard involution --
|g 6.6.
|t Appendix: Convex sets --
|g 6.7.
|t Exercises --
|g 6.8.
|t Notes --
|g 7.
|t Smith form and Kronecker canonical form --
|g 7.1.
|t Matrix polynomials with quaternion coefficients --
|g 7.2.
|t Nonuniqueness of the Smith form --
|g 7.3.
|t Statement of the Kronecker form --
|g 7.4.
|t Proof of Theorem 7.3.2: Existence --
|g 7.5.
|t Proof of Theorem 7.3.2: Uniqueness --
|g 7.6.
|t Comparison with real and complex strict equivalence --
|g 7.7.
|t Exercises --
|g 7.8.
|t Notes --
|g 8.
|t Pencils of hermitian matrices --
|g 8.1.
|t Canonical forms --
|g 8.2.
|t Proof of Theorem 8.1.2 --
|g 8.3.
|t Positive semidefinite linear combinations --
|g 8.4.
|t Proof of Theorem 8.3.3 --
|g 8.5.
|t Comparison with real and complex congruence --
|g 8.6.
|t Expansive and plus-matrices: Singular H --
|g 8.7.
|t Exercises --
|g 8.8.
|t Notes --
|g 9.
|t Skewhermitian and mixed pencils --
|g 9.1.
|t Canonical forms for skewhermitian matrix pencils --
|g 9.2.
|t Comparison with real and complex skewhermitian pencils --
|g 9.3.
|t Canonical forms for mixed pencils: Strict equivalence --
|g 9.4.
|t Canonical forms for mixed pencils: Congruence --
|g 9.5.
|t Proof of Theorem 9.4.1: Existence --
|g 9.6.
|t Proof of Theorem 9.4.1: Uniqueness --
|g 9.7.
|t Comparison with real and complex pencils: Strict equivalence --
|g 9.8.
|t Comparison with complex pencils: Congruence --
|g 9.9.
|t Proofs of Theorems 9.7.2 and 9.8.1 --
|g 9.10.
|t Canonical forms for matrices under congruence --
|g 9.11.
|t Exercises --
|g 9.12.
|t Notes --
|g 10.
|t Indefinite inner products: Conjugation --
|g 10.1.
|t H-hermitian and H-skewhermitian matrices --
|g 10.2.
|t Invariant semidefinite subspaces --
|g 10.3.
|t Invariant Lagrangian subspaces I --
|g 10.4.
|t Differential equations I --
|g 10.5.
|t Hamiltonian, skew-Hamiltonian matrices: Canonical forms --
|g 10.6.
|t Invariant Lagrangian subspaces II --
|g 10.7.
|t Extension of subspaces --
|g 10.8.
|t Proofs of Theorems 10.7.2 and 10.7.5 --
|g 10.9.
|t Differential equations II --
|g 10.10.
|t Exercises --
|g 10.11.
|t Notes --
|g 11.
|t Matrix pencils with symmetries: Nonstandard involution --
|g 11.1.
|t Canonical forms for ø-hermitian pencils --
|g 11.2.
|t Canonical forms for ø-skewhermitian pencils --
|g 11.3.
|t Proof of Theorem 11.2.2 --
|g 11.4.
|t Numerical ranges and cones --
|g 11.5.
|t Exercises --
|g 11.6.
|t Notes --
|g 12.
|t Mixed matrix pencils: Nonstandard involutions --
|g 12.1.
|t Canonical forms for ø-mixed pencils: Strict equivalence --
|g 12.2.
|t Proof of Theorem 12.1.2 --
|g 12.3.
|t Canonical forms of ø-mixed pencils: Congruence --
|g 12.4.
|t Proof of Theorem 12.3.1 --
|g 12.5.
|t Strict equivalence versus ø-congruence --
|g 12.6.
|t Canonical forms of matrices under ø-congruence --
|g 12.7.
|t Comparison with real and complex matrices --
|g 12.8.
|t Proof of Theorem 12.7.4 --
|g 12.9.
|t Exercises --
|g 12.10.
|t Notes --
|g 13.
|t Indefinite inner products: Nonstandard involution --
|g 13.1.
|t Canonical forms: Symmetric inner products --
|g 13.2.
|t Canonical forms: Skewsymmetric inner products --
|g 13.3.
|t Extension of invariant semidefinite subspaces --
|g 13.4.
|t Proofs of Theorems 13.3.3 and 13.3.4 --
|g 13.5.
|t Invariant Lagrangian subspaces --
|g 13.6.
|t Boundedness of solutions of differential equations --
|g 13.7.
|t Exercises --
|g 13.8.
|t Notes --
|g 14.
|t Matrix equations --
|g 14.1.
|t Polynomial equations --
|g 14.2.
|t Bilateral quadratic equations --
|g 14.3.
|t Algebraic Riccati equations --
|g 14.4.
|t Exercises --
|g 14.5.
|t Notes --
|g 15.
|t Appendix: Real and complex canonical forms --
|g 15.1.
|t Jordan and Kronecker canonical forms --
|g 15.2.
|t Real matrix pencils with symmetries --
|g 15.3.
|t Complex matrix pencils with symmetries.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Algebras, Linear
|v Textbooks.
|
650 |
|
0 |
|a Quaternions
|v Textbooks.
|
710 |
2 |
|
|a Ebooks Corporation
|
776 |
0 |
8 |
|i Print version:
|a Rodman, L.
|t Topics in quaternion linear algebra.
|d Princeton, New Jersey : Princeton University Press, [2014]
|z 9780691161853
|w (DLC) 2013050581
|
830 |
|
0 |
|a Princeton series in applied mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=1689375
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 1
|
907 |
|
|
|a .b26569875
|b 240604
|c 141204
|
998 |
|
|
|a uww
|b
|c m
|d z
|e y
|f eng
|g nju
|h 0
|
919 |
|
|
|a .ulebk
|b 2014-10-15
|
915 |
|
|
|a YBP DDA - Also in ProQuest Academic Complete
|
999 |
f |
f |
|i fcff06b3-4542-5667-a99b-b0e03a367459
|s df6f3757-2f26-50a2-bcbf-61594251f60e
|t 1
|