|
|
|
|
LEADER |
00000nam a2200000Ma 4500 |
001 |
b2657740 |
003 |
CStclU |
005 |
20131011160833.6 |
006 |
m o u |
007 |
cr cn| |
008 |
130802s2013 gw a ob 001 0 eng d |
020 |
|
|
|a 9783527653683 (electronic bk.)
|
020 |
|
|
|a 3527653686 (electronic bk.)
|
020 |
|
|
|z 9783527410088
|
035 |
|
|
|a (NhCcYBP)EBC1319497
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a QC173.458.S64
|b V35 2013
|
072 |
|
7 |
|a SCI
|x 013010
|2 bisacsh
|
082 |
0 |
4 |
|a 543.54
|2 23
|
100 |
1 |
|
|a Valkūnas, Leonas.
|
245 |
1 |
0 |
|a Molecular excitation dynamics and relaxation
|h [electronic resource] :
|b quantum theory and spectroscopy /
|c Leonas Valkunas, Darius Abramavicius, Tomas Mancal.
|
260 |
|
|
|a Weiheim, Germany :
|b Wiley-VCH,
|c c2013.
|
300 |
|
|
|a 1 online resource (xiii, 449 p.) :
|b ill.
|
490 |
0 |
|
|a Wiley trading series
|
533 |
|
|
|a Electronic reproduction.
|b Perth, W.A.
|n Available via World Wide Web.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Introduction --
|g 2.
|t Overview of Classical Physics --
|g 2.1.
|t Classical Mechanics --
|g 2.1.1.
|t Concepts of Theoretical Mechanics: Action, Lagrangian, and Lagrange Equations --
|g 2.1.2.
|t Hamilton Equations --
|g 2.1.3.
|t Classical Harmonic Oscillator --
|g 2.2.
|t Classical Electrodynamics --
|g 2.2.1.
|t Electromagnetic Potentials and the Coulomb Gauge --
|g 2.2.2.
|t Transverse and Longitudinal Fields --
|g 2.3.
|t Radiation in Free Space --
|g 2.3.1.
|t Lagrangian and Hamiltonian of the Free Radiation --
|g 2.3.2.
|t Modes of the Electromagnetic Field --
|g 2.4.
|t Light-Matter Interaction --
|g 2.4.1.
|t Interaction Lagrangian and Correct Canonical Momentum --
|g 2.4.2.
|t Hamiltonian of the Interacting Particle-Field System --
|g 2.4.3.
|t Dipole Approximation --
|g 3.
|t Stochastic Dynamics --
|g 3.1.
|t Probability and Random Processes --
|g 3.2.
|t Markov Processes --
|g 3.3.
|t Master Equation for Stochastic Processes --
|g 3.3.1.
|t Two-Level System --
|g 3.4.
|t Fokker-Planck Equation and Diffusion Processes --
|g 3.5.
|t Deterministic Processes --
|g 3.6.
|t Diffusive Flow on a Parabolic Potential (a Harmonic Oscillator) --
|g 3.7.
|t Partially Deterministic Process and the Monte Carlo Simulation of a Stochastic Process --
|g 3.8.
|t Langevin Equation and Its Relation to the Fokker-Planck Equation --
|g 4.
|t Quantum Mechanics --
|g 4.1.
|t Quantum versus Classical --
|g 4.2.
|t Schrödinger Equation --
|g 4.3.
|t Bra-ket Notation --
|g 4.4.
|t Representations --
|g 4.4.1.
|t Schrödinger Representation --
|g 4.4.2.
|t Heisenberg Representation --
|g 4.4.3.
|t Interaction Representation --
|g 4.5.
|t Density Matrix --
|g 4.5.1.
|t Definition --
|g 4.5.2.
|t Pure versus Mixed States --
|g 4.5.3.
|t Dynamics in the Liouville Space --
|g 4.6.
|t Model Systems --
|g 4.6.1.
|t Harmonic Oscillator --
|g 4.6.2.
|t Quantum Well --
|g 4.6.3.
|t Tunneling --
|g 4.6.4.
|t Two-Level System --
|g 4.6.5.
|t Periodic Structures and the Kronig-Penney Model --
|g 4.7.
|t Perturbation Theory --
|g 4.7.1.
|t Time-Independent Perturbation Theory --
|g 4.7.2.
|t Time-Dependent Perturbation Theory --
|g 4.8.
|t Einstein Coefficients --
|g 4.9.
|t Second Quantization --
|g 4.9.1.
|t Bosons and Fermions --
|g 4.9.2.
|t Photons --
|g 4.9.3.
|t Coherent States --
|g 5.
|t Quantum States of Molecules and Aggregates --
|g 5.1.
|t Potential Energy Surfaces, Adiabatic Approximation --
|g 5.2.
|t Interaction between Molecules --
|g 5.3.
|t Excitonically Coupled Dimer --
|g 5.4.
|t Frenkel Excitons of Molecular Aggregates --
|g 5.5.
|t Wannier-Mott Excitons --
|g 5.6.
|t Charge-Transfer Excitons --
|g 5.7.
|t Vibronic Interaction and Exciton Self-Trapping --
|g 5.8.
|t Trapped Excitons --
|g 6.
|t Concept of Decoherence --
|g 6.1.
|t Determinism in Quantum Evolution --
|g 6.2.
|t Entanglement --
|g 6.3.
|t Creating Entanglement by Interaction --
|g 6.4.
|t Decoherence --
|g 6.5.
|t Preferred States --
|g 6.6.
|t Decoherence in Quantum Random Walk --
|g 6.7.
|t Quantum Mechanical Measurement --
|g 6.8.
|t Born Rule --
|g 6.9.
|t Everett or Relative State Interpretation of Quantum Mechanics --
|g 6.10.
|t Consequences of Decoherence for Transfer and Relaxation Phenomena --
|g 7.
|t Statistical Physics --
|g 7.1.
|t Concepts of Classical Thermodynamics --
|g 7.2.
|t Microstates, Statistics, and Entropy --
|g 7.3.
|t Ensembles --
|g 7.3.1.
|t Microcanonical Ensemble --
|g 7.3.2.
|t Canonical Ensemble --
|g 7.3.3.
|t Grand Canonical Ensemble --
|g 7.4.
|t Canonical Ensemble of Classical Harmonic Oscillators --
|g 7.5.
|t Quantum Statistics --
|g 7.6.
|t Canonical Ensemble of Quantum Harmonic Oscillators --
|g 7.7.
|t Symmetry Properties of Many-Particle Wavefunctions --
|g 7.7.1.
|t Bose-Einstein Statistics --
|g 7.7.2.
|t Pauli-Dirac Statistics --
|g 7.8.
|t Dynamic Properties of an Oscillator at Equilibrium Temperature --
|g 7.9.
|t Simulation of Stochastic Noise from a Known Correlation Function --
|g 8.
|t Oscillator Coupled to a Harmonic Bath --
|g 8.1.
|t Dissipative Oscillator --
|g 8.2.
|t Motion of the Classical Oscillator --
|g 8.3.
|t Quantum Bath --
|g 8.4.
|t Quantum Harmonic Oscillator and the Bath: Density Matrix Description --
|g 8.5.
|t Diagonal Fluctuations --
|g 8.6.
|t Fluctuations of a Displaced Oscillator --
|g 9.
|t Projection Operator Approach to Open Quantum Systems --
|g 9.1.
|t Liouville Formalism --
|g 9.2.
|t Reduced Density Matrix of Open Systems --
|g 9.3.
|t Projection (Super)operators --
|g 9.4.
|t Nakajima-Zwanzig Identity --
|g 9.5.
|t Convolutionless Identity --
|g 9.6.
|t Relation between the Projector Equations in Low-Order Perturbation Theory --
|g 9.7.
|t Projection Operator Technique with State Vectors --
|g 10.
|t Path Integral Technique in Dissipative Dynamics --
|g 10.1.
|t General Path Integral --
|g 10.1.1.
|t Free Particle --
|g 10.1.2.
|t Classical Brownian Motion --
|g 10.2.
|t Imaginary-Time Path Integrals --
|g 10.3.
|t Real-Time Path Integrals and the Feynman-Vernon Action --
|g 10.4.
|t Quantum Stochastic Process: The Stochastic Schrödinger Equation --
|g 10.5.
|t Coherent-State Path Integral --
|g 10.6.
|t Stochastic Liouville Equation --
|g 11.
|t Perturbative Approach to Exciton Relaxation in Molecular Aggregates --
|g 11.1.
|t Quantum Master Equation --
|g 11.2.
|t Second-Order Quantum Master Equation --
|g 11.3.
|t Relaxation Equations from the Projection Operator Technique --
|g 11.4.
|t Relaxation of Excitons --
|g 11.5.
|t Modified Redfield Theory --
|g 11.6.
|t Forster Energy Transfer Rates --
|g 11.7.
|t Lindblad Equation Approach to Coherent Exciton Transport --
|g 11.8.
|t Hierarchical Equations of Motion for Excitons --
|g 11.9.
|t Weak Interchromophore Coupling Limit --
|g 11.10.
|t Modeling of Exciton Dynamics in an Excitonic Dimer --
|g 11.11.
|t Coherent versus Dissipative Dynamics: Relevance for Primary Processes in Photosynthesis --
|g 12.
|t Introduction --
|g 13.
|t Semiclassical Response Theory --
|g 13.1.
|t Perturbation Expansion of Polarization: Response Functions --
|g 13.2.
|t First Order Polarization --
|g 13.2.1.
|t Response Function and Susceptibility --
|g 13.2.2.
|t Macroscopic Refraction Index and Absorption Coefficient --
|g 13.3.
|t Nonlinear Polarization and Spectroscopic Signals --
|g 13.3.1.
|t N-wave Mixing --
|g 13.3.2.
|t Pump Probe --
|g 13.3.3.
|t Heterodyne Detection --
|g 14.
|t Microscopic Theory of Linear Absorption and Fluorescence --
|g 14.1.
|t Model of a Two-State System --
|g 14.2.
|t Energy Gap Operator --
|g 14.3.
|t Cumulant Expansion of the First Order Response --
|g 14.4.
|t Equation of Motion for Optical Coherence --
|g 14.5.
|t Lifetime Broadening --
|g 14.6.
|t Inhomogeneous Broadening in Linear Response --
|g 14.7.
|t Spontaneous Emission --
|g 14.8.
|t Fluorescence Line-Narrowing --
|g 14.9.
|t Fluorescence Excitation Spectrum --
|g 15.
|t Four-Wave Mixing Spectroscopy --
|g 15.1.
|t Nonlinear Response of Multilevel Systems --
|g 15.1.1.
|t Two- and Three-Band Molecules --
|g 15.1.2.
|t Liouville Space Pathways --
|g 15.1.3.
|t Third Order Polarization in the Rotating Wave Approximation --
|g 15.1.4.
|t Third Order Polarization in Impulsive Limit --
|g 15.2.
|t Multilevel System in Contact with the Bath --
|g 15.2.1.
|t Energy Fluctuations of the General Multilevel System --
|g 15.2.2.
|t Off-Diagonal Fluctuations and Energy Relaxation --
|g 15.2.3.
|t Fluctuations in a Coupled Multichromophore System --
|g 15.2.4.
|t Inter-Band Fluctuations: Relaxation to the Electronic Ground State --
|g 15.2.5.
|t Energetic Disorder in Four-Wave Mixing --
|g 15.2.6.
|t Random Orientations of Molecules --
|g 15.3.
|t Application of the Response Functions to Simple FWM Experiments --
|g 15.3.1.
|t Photon Echo Peakshift: Learning About System-Bath Interactions --
|g 15.3.2.
|t Revisiting Pump-Probe --
|g 15.3.3.
|t Time-Resolved Fluorescence --
|g 16.
|t Coherent Two-Dimensional Spectroscopy --
|g 16.1.
|t Two-Dimensional Representation of the Response Functions --
|g 16.2.
|t Molecular System with Few Excited States --
|g 16.2.1.
|t Two-State System --
|g 16.2.2.
|t Damped Vibronic System - Two-Level Molecule --
|g 16.3.
|t Electronic Dimer --
|g 16.4.
|t Dimer of Three-Level Chromophores - Vibrational Dimer --
|g 16.5.
|t Interferences of the 2D Signals: General Discussion Based on an Electronic Dimer --
|g 16.6.
|t Vibrational vs. Electronic Coherences in 2D Spectrum of Molecular Systems --
|g 17.
|t Two Dimensional Spectroscopy Applications for Photosynthetic Excitons --
|g 17.1.
|t Photosynthetic Molecular Aggregates --
|g 17.1.1.
|t Fenna-Matthews-Olson Complex --
|g 17.1.2.
|t LH2 Aggregate of Bacterial Complexes --
|g 17.1.3.
|t Photosystem I (PS-I) --
|g 17.1.4.
|t Photosystem II (PS-II) --
|g 17.2.
|t Simulations of 2D Spectroscopy of Photosynthetic Aggregates --
|g 17.2.1.
|t Energy Relaxation in FMO Aggregate --
|g 17.2.2.
|t Energy Relaxation Pathways in PS-I --
|g 17.2.3.
|t Quantum Transport in PS-II Reaction Center --
|g 18.
|t Single Molecule Spectroscopy --
|g 18.1.
|t Historical Overview --
|g 18.2.
|t How Photosynthetic Proteins Switch --
|g 18.3.
|t Dichotomous Exciton Model --
|g A.1.
|t Elements of the Field Theory --
|g A.2.
|t Characteristic Function and Cumulants --
|g A.3.
|t Weyl Formula --
|g A.4.
|t Thermodynamic Potentials and the Partition Function --
|g A.5.
|t Fourier Transformation --
|g A.6.
|t Born Rule --
|g A.7.
|t Green's Function of a Harmonic Oscillator --
|g A.8.
|t Cumulant Expansion in Quantum Mechanics --
|g A.8.1.
|t Application to the Double Slit Experiment --
|g A.8.2.
|t Application to Linear Optical Response --
|g A.8.3.
|t Application to Third Order Nonlinear Response --
|g A.9.
|t Matching the Heterodyned FWM Signal with the Pump-Probe --
|g A.10.
|t Response Functions of an Excitonic System with Diagonal and Off-Diagonal Fluctuations in the Secular Limit.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Condensed matter
|x Spectra.
|
650 |
|
0 |
|a Molecular spectroscopy.
|
650 |
|
0 |
|a Quantum theory.
|
700 |
1 |
|
|a Abramavicius, Darius.
|
700 |
1 |
|
|a Mancal, Tomas.
|
710 |
2 |
|
|a Ebooks Corporation
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=1319497
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 1
|
907 |
|
|
|a .b26577409
|b 240604
|c 141204
|
998 |
|
|
|a uww
|b
|c m
|d z
|e y
|f eng
|g gw
|h 0
|
919 |
|
|
|a .ulebk
|b 2014-10-15
|
915 |
|
|
|a YBP DDA - Also in ProQuest Academic Complete
|
999 |
f |
f |
|i e791e6b7-5380-5adb-ab5a-ea69acf98963
|s 132f2100-fb2c-5893-8ba5-1db2390f9a15
|t 1
|