Molecular excitation dynamics and relaxation quantum theory and spectroscopy /

Saved in:
Bibliographic Details
Main Author: Valkūnas, Leonas
Corporate Author: Ebooks Corporation
Other Authors: Abramavicius, Darius, Mancal, Tomas
Format: Electronic eBook
Language:English
Published: Weiheim, Germany : Wiley-VCH, c2013.
Series:Wiley trading series
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1. Introduction
  • 2. Overview of Classical Physics
  • 2.1. Classical Mechanics
  • 2.1.1. Concepts of Theoretical Mechanics: Action, Lagrangian, and Lagrange Equations
  • 2.1.2. Hamilton Equations
  • 2.1.3. Classical Harmonic Oscillator
  • 2.2. Classical Electrodynamics
  • 2.2.1. Electromagnetic Potentials and the Coulomb Gauge
  • 2.2.2. Transverse and Longitudinal Fields
  • 2.3. Radiation in Free Space
  • 2.3.1. Lagrangian and Hamiltonian of the Free Radiation
  • 2.3.2. Modes of the Electromagnetic Field
  • 2.4. Light-Matter Interaction
  • 2.4.1. Interaction Lagrangian and Correct Canonical Momentum
  • 2.4.2. Hamiltonian of the Interacting Particle-Field System
  • 2.4.3. Dipole Approximation
  • 3. Stochastic Dynamics
  • 3.1. Probability and Random Processes
  • 3.2. Markov Processes
  • 3.3. Master Equation for Stochastic Processes
  • 3.3.1. Two-Level System
  • 3.4. Fokker-Planck Equation and Diffusion Processes
  • 3.5. Deterministic Processes
  • 3.6. Diffusive Flow on a Parabolic Potential (a Harmonic Oscillator)
  • 3.7. Partially Deterministic Process and the Monte Carlo Simulation of a Stochastic Process
  • 3.8. Langevin Equation and Its Relation to the Fokker-Planck Equation
  • 4. Quantum Mechanics
  • 4.1. Quantum versus Classical
  • 4.2. Schrödinger Equation
  • 4.3. Bra-ket Notation
  • 4.4. Representations
  • 4.4.1. Schrödinger Representation
  • 4.4.2. Heisenberg Representation
  • 4.4.3. Interaction Representation
  • 4.5. Density Matrix
  • 4.5.1. Definition
  • 4.5.2. Pure versus Mixed States
  • 4.5.3. Dynamics in the Liouville Space
  • 4.6. Model Systems
  • 4.6.1. Harmonic Oscillator
  • 4.6.2. Quantum Well
  • 4.6.3. Tunneling
  • 4.6.4. Two-Level System
  • 4.6.5. Periodic Structures and the Kronig-Penney Model
  • 4.7. Perturbation Theory
  • 4.7.1. Time-Independent Perturbation Theory
  • 4.7.2. Time-Dependent Perturbation Theory
  • 4.8. Einstein Coefficients
  • 4.9. Second Quantization
  • 4.9.1. Bosons and Fermions
  • 4.9.2. Photons
  • 4.9.3. Coherent States
  • 5. Quantum States of Molecules and Aggregates
  • 5.1. Potential Energy Surfaces, Adiabatic Approximation
  • 5.2. Interaction between Molecules
  • 5.3. Excitonically Coupled Dimer
  • 5.4. Frenkel Excitons of Molecular Aggregates
  • 5.5. Wannier-Mott Excitons
  • 5.6. Charge-Transfer Excitons
  • 5.7. Vibronic Interaction and Exciton Self-Trapping
  • 5.8. Trapped Excitons
  • 6. Concept of Decoherence
  • 6.1. Determinism in Quantum Evolution
  • 6.2. Entanglement
  • 6.3. Creating Entanglement by Interaction
  • 6.4. Decoherence
  • 6.5. Preferred States
  • 6.6. Decoherence in Quantum Random Walk
  • 6.7. Quantum Mechanical Measurement
  • 6.8. Born Rule
  • 6.9. Everett or Relative State Interpretation of Quantum Mechanics
  • 6.10. Consequences of Decoherence for Transfer and Relaxation Phenomena
  • 7. Statistical Physics
  • 7.1. Concepts of Classical Thermodynamics
  • 7.2. Microstates, Statistics, and Entropy
  • 7.3. Ensembles
  • 7.3.1. Microcanonical Ensemble
  • 7.3.2. Canonical Ensemble
  • 7.3.3. Grand Canonical Ensemble
  • 7.4. Canonical Ensemble of Classical Harmonic Oscillators
  • 7.5. Quantum Statistics
  • 7.6. Canonical Ensemble of Quantum Harmonic Oscillators
  • 7.7. Symmetry Properties of Many-Particle Wavefunctions
  • 7.7.1. Bose-Einstein Statistics
  • 7.7.2. Pauli-Dirac Statistics
  • 7.8. Dynamic Properties of an Oscillator at Equilibrium Temperature
  • 7.9. Simulation of Stochastic Noise from a Known Correlation Function
  • 8. Oscillator Coupled to a Harmonic Bath
  • 8.1. Dissipative Oscillator
  • 8.2. Motion of the Classical Oscillator
  • 8.3. Quantum Bath
  • 8.4. Quantum Harmonic Oscillator and the Bath: Density Matrix Description
  • 8.5. Diagonal Fluctuations
  • 8.6. Fluctuations of a Displaced Oscillator
  • 9. Projection Operator Approach to Open Quantum Systems
  • 9.1. Liouville Formalism
  • 9.2. Reduced Density Matrix of Open Systems
  • 9.3. Projection (Super)operators
  • 9.4. Nakajima-Zwanzig Identity
  • 9.5. Convolutionless Identity
  • 9.6. Relation between the Projector Equations in Low-Order Perturbation Theory
  • 9.7. Projection Operator Technique with State Vectors
  • 10. Path Integral Technique in Dissipative Dynamics
  • 10.1. General Path Integral
  • 10.1.1. Free Particle
  • 10.1.2. Classical Brownian Motion
  • 10.2. Imaginary-Time Path Integrals
  • 10.3. Real-Time Path Integrals and the Feynman-Vernon Action
  • 10.4. Quantum Stochastic Process: The Stochastic Schrödinger Equation
  • 10.5. Coherent-State Path Integral
  • 10.6. Stochastic Liouville Equation
  • 11. Perturbative Approach to Exciton Relaxation in Molecular Aggregates
  • 11.1. Quantum Master Equation
  • 11.2. Second-Order Quantum Master Equation
  • 11.3. Relaxation Equations from the Projection Operator Technique
  • 11.4. Relaxation of Excitons
  • 11.5. Modified Redfield Theory
  • 11.6. Forster Energy Transfer Rates
  • 11.7. Lindblad Equation Approach to Coherent Exciton Transport
  • 11.8. Hierarchical Equations of Motion for Excitons
  • 11.9. Weak Interchromophore Coupling Limit
  • 11.10. Modeling of Exciton Dynamics in an Excitonic Dimer
  • 11.11. Coherent versus Dissipative Dynamics: Relevance for Primary Processes in Photosynthesis
  • 12. Introduction
  • 13. Semiclassical Response Theory
  • 13.1. Perturbation Expansion of Polarization: Response Functions
  • 13.2. First Order Polarization
  • 13.2.1. Response Function and Susceptibility
  • 13.2.2. Macroscopic Refraction Index and Absorption Coefficient
  • 13.3. Nonlinear Polarization and Spectroscopic Signals
  • 13.3.1. N-wave Mixing
  • 13.3.2. Pump Probe
  • 13.3.3. Heterodyne Detection
  • 14. Microscopic Theory of Linear Absorption and Fluorescence
  • 14.1. Model of a Two-State System
  • 14.2. Energy Gap Operator
  • 14.3. Cumulant Expansion of the First Order Response
  • 14.4. Equation of Motion for Optical Coherence
  • 14.5. Lifetime Broadening
  • 14.6. Inhomogeneous Broadening in Linear Response
  • 14.7. Spontaneous Emission
  • 14.8. Fluorescence Line-Narrowing
  • 14.9. Fluorescence Excitation Spectrum
  • 15. Four-Wave Mixing Spectroscopy
  • 15.1. Nonlinear Response of Multilevel Systems
  • 15.1.1. Two- and Three-Band Molecules
  • 15.1.2. Liouville Space Pathways
  • 15.1.3. Third Order Polarization in the Rotating Wave Approximation
  • 15.1.4. Third Order Polarization in Impulsive Limit
  • 15.2. Multilevel System in Contact with the Bath
  • 15.2.1. Energy Fluctuations of the General Multilevel System
  • 15.2.2. Off-Diagonal Fluctuations and Energy Relaxation
  • 15.2.3. Fluctuations in a Coupled Multichromophore System
  • 15.2.4. Inter-Band Fluctuations: Relaxation to the Electronic Ground State
  • 15.2.5. Energetic Disorder in Four-Wave Mixing
  • 15.2.6. Random Orientations of Molecules
  • 15.3. Application of the Response Functions to Simple FWM Experiments
  • 15.3.1. Photon Echo Peakshift: Learning About System-Bath Interactions
  • 15.3.2. Revisiting Pump-Probe
  • 15.3.3. Time-Resolved Fluorescence
  • 16. Coherent Two-Dimensional Spectroscopy
  • 16.1. Two-Dimensional Representation of the Response Functions
  • 16.2. Molecular System with Few Excited States
  • 16.2.1. Two-State System
  • 16.2.2. Damped Vibronic System - Two-Level Molecule
  • 16.3. Electronic Dimer
  • 16.4. Dimer of Three-Level Chromophores - Vibrational Dimer
  • 16.5. Interferences of the 2D Signals: General Discussion Based on an Electronic Dimer
  • 16.6. Vibrational vs. Electronic Coherences in 2D Spectrum of Molecular Systems
  • 17. Two Dimensional Spectroscopy Applications for Photosynthetic Excitons
  • 17.1. Photosynthetic Molecular Aggregates
  • 17.1.1. Fenna-Matthews-Olson Complex
  • 17.1.2. LH2 Aggregate of Bacterial Complexes
  • 17.1.3. Photosystem I (PS-I)
  • 17.1.4. Photosystem II (PS-II)
  • 17.2. Simulations of 2D Spectroscopy of Photosynthetic Aggregates
  • 17.2.1. Energy Relaxation in FMO Aggregate
  • 17.2.2. Energy Relaxation Pathways in PS-I
  • 17.2.3. Quantum Transport in PS-II Reaction Center
  • 18. Single Molecule Spectroscopy
  • 18.1. Historical Overview
  • 18.2. How Photosynthetic Proteins Switch
  • 18.3. Dichotomous Exciton Model
  • A.1. Elements of the Field Theory
  • A.2. Characteristic Function and Cumulants
  • A.3. Weyl Formula
  • A.4. Thermodynamic Potentials and the Partition Function
  • A.5. Fourier Transformation
  • A.6. Born Rule
  • A.7. Green's Function of a Harmonic Oscillator
  • A.8. Cumulant Expansion in Quantum Mechanics
  • A.8.1. Application to the Double Slit Experiment
  • A.8.2. Application to Linear Optical Response
  • A.8.3. Application to Third Order Nonlinear Response
  • A.9. Matching the Heterodyned FWM Signal with the Pump-Probe
  • A.10. Response Functions of an Excitonic System with Diagonal and Off-Diagonal Fluctuations in the Secular Limit.