Frontiers in relativistic celestial mechanics /

Saved in:
Bibliographic Details
Corporate Author: Ebooks Corporation
Other Authors: Brumberg, V. A. (honouree.)
Format: Electronic eBook
Language:English
Published: Berlin ; Boston : Walter de Gruyter GmbH & Co. KG, [2014]
Series:De Gruyter studies in mathematical physics ; 21, 22.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)

MARC

LEADER 00000nam a22000001i 4500
001 b2753554
003 CStclU
005 20141229103737.7
006 m |o d |
007 cr |n|||||||||
008 141229m20149999gw a ob 011 0 eng d
020 |a 3110337495 (electronic bk.) 
020 |a 9783110337495 (electronic bk.) 
020 |z 9783110337471 (v. 1) 
020 |z 3110337479 (v. 1) 
020 |z 9783110345452 (v. 2) 
020 |z 3110345455 (v. 2) 
020 |z 9783110359329 
020 |z 3110359324 
035 |a (NhCcYBP)EBC1480453 
040 |a NhCcYBP  |c NhCcYBP 
050 4 |a QB351  |b .F76 2014 
072 7 |a QB  |2 lcco 
072 7 |a QA  |2 lcco 
082 0 4 |a 521  |2 23 
245 0 0 |a Frontiers in relativistic celestial mechanics /  |c edited by Sergei M. Kopeikin. 
264 1 |a Berlin ;  |a Boston :  |b Walter de Gruyter GmbH & Co. KG,  |c [2014] 
300 |a 1 online resource (2 volumes) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter studies in mathematical physics ;  |v 21, 22 
504 |a Includes bibliographical references and index. 
505 0 0 |a Machine generated contents note:   |t general relativistic two-body problem /  |r Thibault Damour --   |g 1.  |t Introduction --   |g 2.  |t Multichart approach to the N-body problem --   |g 3.  |t EOB description of the conservative dynamics of two-body systems --   |g 4.  |t EOB description of radiation reaction and of the emitted waveform during inspiral --   |g 5.  |t EOB description of the merger of binary black holes and of the ringdown of the final black hole --   |g 6.  |t EOB vs NR --   |g 6.1.  |t EOB[NR] waveforms vs NR ones --   |g 6.2.  |t EOB[3PN] dynamics vs NR one --   |g 7.  |t Other developments --   |g 7.1.  |t EOB with spinning bodies --   |g 7.2.  |t EOB with tidally deformed bodies --   |g 7.3.  |t EOB and GSF --   |g 8.  |t Conclusions --   |t References --   |t Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations /  |r Gerhard Schafer --   |g 1.  |t Introduction --   |g 2.  |t Hamiltonian formulation of general relativity --   |g 2.1.  |t Point particles --   |g 2.2.  |t Spinning particles --   |g 2.3.  |t Introducing the Routhian --   |g 3.  |t Poincare algebra --   |g 4.  |t Post-Newtonian binary Hamiltonians --   |g 4.1.  |t Spinless binaries --   |g 4.2.  |t Spinning binaries --   |g 5.  |t Binary motion --   |g 5.1.  |t Spinless two-body systems --   |g 5.2.  |t Particle motion in Kerr geometry --   |g 5.3.  |t Two-body systems with spinning components --   |t References --   |t Covariant theory of the post-Newtonian equations of motion of extended bodies /  |r Sergei Kopeikin --   |g 1.  |t Introduction --   |g 2.  |t theory of gravity for post-Newtonian celestial mechanics --   |g 2.1.  |t field equations --   |g 2.2.  |t energy-momentum tensor --   |g 3.  |t Parameterized post-Newtonian celestial mechanics --   |g 3.1.  |t External and internal problems of motion --   |g 3.2.  |t Solving the field equations by post-Newtonian approximations --   |g 3.3.  |t post-Newtonian field equations --   |g 3.4.  |t Conformal harmonic gauge --   |g 4.  |t Parameterized post-Newtonian coordinates --   |g 4.1.  |t global post-Newtonian coordinates --   |g 4.2.  |t local post-Newtonian coordinates --   |g 5.  |t Post-Newtonian coordinate transformations by asymptotic matching --   |g 5.1.  |t General structure of the transformation --   |g 5.2.  |t Matching solution --   |g 6.  |t Post-Newtonian equations of motion of extended bodies in local coordinates --   |g 6.1.  |t Microscopic post-Newtonian equations of motion --   |g 6.2.  |t Post-Newtonian mass of an extended body --   |g 6.3.  |t Post-Newtonian center of mass and linear momentum of an extended body --   |g 6.4.  |t Translational equation of motion in the local coordinates --   |g 7.  |t Post-Newtonian equations of motion of extended bodies in global coordinates --   |g 7.1.  |t STF expansions of the external gravitational potentials in terms of the internal multipoles --   |g 7.2.  |t Translational equations of motion --   |g 8.  |t Covariant equations of translational motion of extended bodies --   |g 8.1.  |t Effective background manifold --   |g 8.2.  |t Geodesic motion and 4-force --   |g 8.3.  |t Four-dimensional form of multipole moments --   |g 8.4.  |t Covariant translational equations of motion --   |g 8.5.  |t Comparison with Dixon's translational equations of motion --   |t References --   |t On the DSX-framework /  |r Michael Soffel --   |g 1.  |t Introduction --   |g 2.  |t post-Newtonian formalism --   |g 2.1.  |t general form of the metric --   |g 3.  |t Field equations and the gauge problem --   |g 4.  |t gravitational field of a body --   |g 4.1.  |t Post-Newtonian multipole moments --   |g 5.  |t Geodesic motion in the PN-Schwarzschild field --   |g 6.  |t Astronomical reference frames --   |g 6.1.  |t Transformation between global and local systems: first results --   |g 6.2.  |t Split of local potentials, multipole moments --   |g 6.3.  |t Tetrad induced local coordinates --   |g 6.4.  |t standard transformation between global and local coordinates --   |g 6.5.  |t description of tidal forces --   |g 7.  |t gravitational N-body problem --   |g 7.1.  |t Local evolution equations --   |g 7.2.  |t translational motion --   |g 8.  |t Further developments --   |t References --   |t General relativistic theory of light propagation in multipolar gravitational fields /  |r Sergei Kopeikin --   |g 1.  |t Introduction --   |g 1.1.  |t Statement of the problem --   |g 1.2.  |t Historical background --   |g 1.3.  |t Notations and conventions --   |g 2.  |t metric tensor, gauges and coordinates --   |g 2.1.  |t canonical form of the metric tensor perturbation --   |g 2.2.  |t harmonic coordinates --   |g 2.3.  |t ADM coordinates --   |g 3.  |t Equations of propagation of electromagnetic signals --   |g 3.1.  |t Maxwell equations in curved spacetime --   |g 3.2.  |t Maxwell equations in the geometric optics approximation --   |g 3.3.  |t Electromagnetic eikonal and light-ray geodesies --   |g 3.4.  |t Polarization of light and the Stokes parameters --   |g 4.  |t Mathematical technique for analytic integration of light-ray equations --   |g 4.1.  |t Monopole and dipole light-ray integrals --   |g 4.2.  |t Light-ray integrals from quadrupole and higher order multipoles --   |g 5.  |t Gravitational perturbations of the light ray --   |g 5.1.  |t Relativistic perturbation of the electromagnetic eikonal --   |g 5.2.  |t Relativistic perturbation of the coordinate velocity of light --   |g 5.3.  |t Perturbation of the light-ray trajectory --   |g 6.  |t Observable relativistic effects --   |g 6.1.  |t Gravitational time delay of light --   |g 6.2.  |t Gravitational deflection of light --   |g 6.3.  |t Gravitational shift of frequency --   |g 6.4.  |t Gravity-induced rotation of the plane of polarization of light --   |g 7.  |t Light propagation through the field of gravitational lens --   |g 7.1.  |t Small parameters and asymptotic expansions --   |g 7.2.  |t Asymptotic expressions for observable effects --   |g 8.  |t Light propagation through the field of plane gravitational waves --   |g 8.1.  |t Plane-wave asymptotic expansions --   |g 8.2.  |t Asymptotic expressions for observable effects --   |t References --   |t On the backreaction problem in cosmology /  |r Toshifumi Futamase --   |g 1.  |t Introduction --   |g 2.  |t Formulation and averaging --   |g 3.  |t Calculation in the Newtonian gauge --   |g 4.  |t Definition of the background --   |g 5.  |t Conclusions --   |t References --   |t Post-Newtonian approximations in cosmology /  |r Sergei Kopeikin --   |g 1.  |t Introduction --   |g 2.  |t Derivatives on the geometric manifold --   |g 2.1.  |t Variational derivative --   |g 2.2.  |t Lie derivative --   |g 3.  |t Lagrangian and field variables --   |g 3.1.  |t Action functional --   |g 3.2.  |t Lagrangian of the ideal fluid --   |g 3.3.  |t Lagrangian of scalar held --   |g 3.4.  |t Lagrangian of a localized astronomical system --   |g 4.  |t Background manifold --   |g 4.1.  |t Hubble flow --   |g 4.2.  |t Friedmann-Lemitre-Robertson-Walker metric --   |g 4.3.  |t Christoffel symbols and covariant derivatives --   |g 4.4.  |t Riemann tensor --   |g 4.5.  |t Friedmann equations --   |g 4.6.  |t Hydrodynamic equations of the ideal fluid --   |g 4.7.  |t Scalar field equations --   |g 4.8.  |t Equations of motion of matter of the localized astronomical system --   |g 5.  |t Lagrangian perturbations of FLRW manifold --   |g 5.1.  |t concept of perturbations --   |g 5.2.  |t perturbative expansion of the Lagrangian --   |g 5.3.  |t background field equations --   |g 5.4.  |t Lagrangian equations for gravitational field perturbations --   |g 5.5.  |t Lagrangian equations for dark matter perturbations --   |g 5.6.  |t Lagrangian equations for dark energy perturbations --   |g 5.7.  |t Linearized post-Newtonian equations for field variables --   |g 6.  |t Gauge-invariant scalars and field equations in 1+3 threading formalism --   |g 6.1.  |t Threading decomposition of the metric perturbations --   |g 6.2.  |t Gauge transformation of the field variables --   |g 6.3.  |t Gauge-invariant scalars --   |g 6.4.  |t Field equations for the scalar perturbations --   |g 6.5.  |t Field equations for vector perturbations --   |g 6.6.  |t Field equations for tensor perturbations --   |g 6.7.  |t Residual gauge freedom --   |g 7.  |t Post-Newtonian field equations in a spatially flat universe --   |g 7.1.  |t Cosmological parameters and scalar field potential --   |g 7.2.  |t Conformal cosmological perturbations --   |g 7.3.  |t Post-Newtonian field equations in conformal spacetime --   |g 7.4.  |t Residual gauge freedom in the conformal spacetime --   |g 8.  |t Decoupled system of the post-Newtonian field equations --   |g 8.1.  |t universe governed by dark matter and cosmological constant --   |g 8.2.  |t universe governed by dark energy --   |g 8.3.  |t Post-Newtonian potentials in the linearized Hubble approximation --   |g 8.4.  |t Lorentz invariance of retarded potentials --   |g 8.5.  |t Retarded solution of the sound-wave equation --   |t References. 
533 |a Electronic reproduction.  |b Perth, W.A.  |n Available via World Wide Web. 
588 |a Description based on print version record. 
650 0 |a Celestial mechanics. 
650 0 |a General relativity (Physics) 
650 0 |a Astrometry. 
700 1 |a Kopeikin, Sergei,  |e editor of compilation. 
700 1 |a Brumberg, V. A.,  |e honouree. 
710 2 |a Ebooks Corporation 
776 0 8 |c Original  |z 9783110337471  |z 3110337479  |z 9783110345452  |z 3110345455  |z 9783110359329  |z 3110359324  |w (DLC) 2014017399 
830 0 |a De Gruyter studies in mathematical physics ;  |v 21, 22. 
856 4 0 |u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=1480453  |z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)  |t 1 
907 |a .b2753554x  |b 200414  |c 150206 
998 |a uww  |b    |c m  |d z   |e y  |f eng  |g gw   |h 0 
919 |a .ulebk  |b 2014-10-15 
915 |a YBP DDA - Also in ProQuest Academic Complete 
999 f f |i 865aee94-b735-5ee1-8cde-551331a2dba4  |s 27c4c948-7873-5f4c-90d8-3d6427657270  |t 1