|
|
|
|
LEADER |
00000nam a22000001i 4500 |
001 |
b2753554 |
003 |
CStclU |
005 |
20141229103737.7 |
006 |
m |o d | |
007 |
cr |n||||||||| |
008 |
141229m20149999gw a ob 011 0 eng d |
020 |
|
|
|a 3110337495 (electronic bk.)
|
020 |
|
|
|a 9783110337495 (electronic bk.)
|
020 |
|
|
|z 9783110337471 (v. 1)
|
020 |
|
|
|z 3110337479 (v. 1)
|
020 |
|
|
|z 9783110345452 (v. 2)
|
020 |
|
|
|z 3110345455 (v. 2)
|
020 |
|
|
|z 9783110359329
|
020 |
|
|
|z 3110359324
|
035 |
|
|
|a (NhCcYBP)EBC1480453
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a QB351
|b .F76 2014
|
072 |
|
7 |
|a QB
|2 lcco
|
072 |
|
7 |
|a QA
|2 lcco
|
082 |
0 |
4 |
|a 521
|2 23
|
245 |
0 |
0 |
|a Frontiers in relativistic celestial mechanics /
|c edited by Sergei M. Kopeikin.
|
264 |
|
1 |
|a Berlin ;
|a Boston :
|b Walter de Gruyter GmbH & Co. KG,
|c [2014]
|
300 |
|
|
|a 1 online resource (2 volumes) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter studies in mathematical physics ;
|v 21, 22
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|t general relativistic two-body problem /
|r Thibault Damour --
|g 1.
|t Introduction --
|g 2.
|t Multichart approach to the N-body problem --
|g 3.
|t EOB description of the conservative dynamics of two-body systems --
|g 4.
|t EOB description of radiation reaction and of the emitted waveform during inspiral --
|g 5.
|t EOB description of the merger of binary black holes and of the ringdown of the final black hole --
|g 6.
|t EOB vs NR --
|g 6.1.
|t EOB[NR] waveforms vs NR ones --
|g 6.2.
|t EOB[3PN] dynamics vs NR one --
|g 7.
|t Other developments --
|g 7.1.
|t EOB with spinning bodies --
|g 7.2.
|t EOB with tidally deformed bodies --
|g 7.3.
|t EOB and GSF --
|g 8.
|t Conclusions --
|t References --
|t Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations /
|r Gerhard Schafer --
|g 1.
|t Introduction --
|g 2.
|t Hamiltonian formulation of general relativity --
|g 2.1.
|t Point particles --
|g 2.2.
|t Spinning particles --
|g 2.3.
|t Introducing the Routhian --
|g 3.
|t Poincare algebra --
|g 4.
|t Post-Newtonian binary Hamiltonians --
|g 4.1.
|t Spinless binaries --
|g 4.2.
|t Spinning binaries --
|g 5.
|t Binary motion --
|g 5.1.
|t Spinless two-body systems --
|g 5.2.
|t Particle motion in Kerr geometry --
|g 5.3.
|t Two-body systems with spinning components --
|t References --
|t Covariant theory of the post-Newtonian equations of motion of extended bodies /
|r Sergei Kopeikin --
|g 1.
|t Introduction --
|g 2.
|t theory of gravity for post-Newtonian celestial mechanics --
|g 2.1.
|t field equations --
|g 2.2.
|t energy-momentum tensor --
|g 3.
|t Parameterized post-Newtonian celestial mechanics --
|g 3.1.
|t External and internal problems of motion --
|g 3.2.
|t Solving the field equations by post-Newtonian approximations --
|g 3.3.
|t post-Newtonian field equations --
|g 3.4.
|t Conformal harmonic gauge --
|g 4.
|t Parameterized post-Newtonian coordinates --
|g 4.1.
|t global post-Newtonian coordinates --
|g 4.2.
|t local post-Newtonian coordinates --
|g 5.
|t Post-Newtonian coordinate transformations by asymptotic matching --
|g 5.1.
|t General structure of the transformation --
|g 5.2.
|t Matching solution --
|g 6.
|t Post-Newtonian equations of motion of extended bodies in local coordinates --
|g 6.1.
|t Microscopic post-Newtonian equations of motion --
|g 6.2.
|t Post-Newtonian mass of an extended body --
|g 6.3.
|t Post-Newtonian center of mass and linear momentum of an extended body --
|g 6.4.
|t Translational equation of motion in the local coordinates --
|g 7.
|t Post-Newtonian equations of motion of extended bodies in global coordinates --
|g 7.1.
|t STF expansions of the external gravitational potentials in terms of the internal multipoles --
|g 7.2.
|t Translational equations of motion --
|g 8.
|t Covariant equations of translational motion of extended bodies --
|g 8.1.
|t Effective background manifold --
|g 8.2.
|t Geodesic motion and 4-force --
|g 8.3.
|t Four-dimensional form of multipole moments --
|g 8.4.
|t Covariant translational equations of motion --
|g 8.5.
|t Comparison with Dixon's translational equations of motion --
|t References --
|t On the DSX-framework /
|r Michael Soffel --
|g 1.
|t Introduction --
|g 2.
|t post-Newtonian formalism --
|g 2.1.
|t general form of the metric --
|g 3.
|t Field equations and the gauge problem --
|g 4.
|t gravitational field of a body --
|g 4.1.
|t Post-Newtonian multipole moments --
|g 5.
|t Geodesic motion in the PN-Schwarzschild field --
|g 6.
|t Astronomical reference frames --
|g 6.1.
|t Transformation between global and local systems: first results --
|g 6.2.
|t Split of local potentials, multipole moments --
|g 6.3.
|t Tetrad induced local coordinates --
|g 6.4.
|t standard transformation between global and local coordinates --
|g 6.5.
|t description of tidal forces --
|g 7.
|t gravitational N-body problem --
|g 7.1.
|t Local evolution equations --
|g 7.2.
|t translational motion --
|g 8.
|t Further developments --
|t References --
|t General relativistic theory of light propagation in multipolar gravitational fields /
|r Sergei Kopeikin --
|g 1.
|t Introduction --
|g 1.1.
|t Statement of the problem --
|g 1.2.
|t Historical background --
|g 1.3.
|t Notations and conventions --
|g 2.
|t metric tensor, gauges and coordinates --
|g 2.1.
|t canonical form of the metric tensor perturbation --
|g 2.2.
|t harmonic coordinates --
|g 2.3.
|t ADM coordinates --
|g 3.
|t Equations of propagation of electromagnetic signals --
|g 3.1.
|t Maxwell equations in curved spacetime --
|g 3.2.
|t Maxwell equations in the geometric optics approximation --
|g 3.3.
|t Electromagnetic eikonal and light-ray geodesies --
|g 3.4.
|t Polarization of light and the Stokes parameters --
|g 4.
|t Mathematical technique for analytic integration of light-ray equations --
|g 4.1.
|t Monopole and dipole light-ray integrals --
|g 4.2.
|t Light-ray integrals from quadrupole and higher order multipoles --
|g 5.
|t Gravitational perturbations of the light ray --
|g 5.1.
|t Relativistic perturbation of the electromagnetic eikonal --
|g 5.2.
|t Relativistic perturbation of the coordinate velocity of light --
|g 5.3.
|t Perturbation of the light-ray trajectory --
|g 6.
|t Observable relativistic effects --
|g 6.1.
|t Gravitational time delay of light --
|g 6.2.
|t Gravitational deflection of light --
|g 6.3.
|t Gravitational shift of frequency --
|g 6.4.
|t Gravity-induced rotation of the plane of polarization of light --
|g 7.
|t Light propagation through the field of gravitational lens --
|g 7.1.
|t Small parameters and asymptotic expansions --
|g 7.2.
|t Asymptotic expressions for observable effects --
|g 8.
|t Light propagation through the field of plane gravitational waves --
|g 8.1.
|t Plane-wave asymptotic expansions --
|g 8.2.
|t Asymptotic expressions for observable effects --
|t References --
|t On the backreaction problem in cosmology /
|r Toshifumi Futamase --
|g 1.
|t Introduction --
|g 2.
|t Formulation and averaging --
|g 3.
|t Calculation in the Newtonian gauge --
|g 4.
|t Definition of the background --
|g 5.
|t Conclusions --
|t References --
|t Post-Newtonian approximations in cosmology /
|r Sergei Kopeikin --
|g 1.
|t Introduction --
|g 2.
|t Derivatives on the geometric manifold --
|g 2.1.
|t Variational derivative --
|g 2.2.
|t Lie derivative --
|g 3.
|t Lagrangian and field variables --
|g 3.1.
|t Action functional --
|g 3.2.
|t Lagrangian of the ideal fluid --
|g 3.3.
|t Lagrangian of scalar held --
|g 3.4.
|t Lagrangian of a localized astronomical system --
|g 4.
|t Background manifold --
|g 4.1.
|t Hubble flow --
|g 4.2.
|t Friedmann-Lemitre-Robertson-Walker metric --
|g 4.3.
|t Christoffel symbols and covariant derivatives --
|g 4.4.
|t Riemann tensor --
|g 4.5.
|t Friedmann equations --
|g 4.6.
|t Hydrodynamic equations of the ideal fluid --
|g 4.7.
|t Scalar field equations --
|g 4.8.
|t Equations of motion of matter of the localized astronomical system --
|g 5.
|t Lagrangian perturbations of FLRW manifold --
|g 5.1.
|t concept of perturbations --
|g 5.2.
|t perturbative expansion of the Lagrangian --
|g 5.3.
|t background field equations --
|g 5.4.
|t Lagrangian equations for gravitational field perturbations --
|g 5.5.
|t Lagrangian equations for dark matter perturbations --
|g 5.6.
|t Lagrangian equations for dark energy perturbations --
|g 5.7.
|t Linearized post-Newtonian equations for field variables --
|g 6.
|t Gauge-invariant scalars and field equations in 1+3 threading formalism --
|g 6.1.
|t Threading decomposition of the metric perturbations --
|g 6.2.
|t Gauge transformation of the field variables --
|g 6.3.
|t Gauge-invariant scalars --
|g 6.4.
|t Field equations for the scalar perturbations --
|g 6.5.
|t Field equations for vector perturbations --
|g 6.6.
|t Field equations for tensor perturbations --
|g 6.7.
|t Residual gauge freedom --
|g 7.
|t Post-Newtonian field equations in a spatially flat universe --
|g 7.1.
|t Cosmological parameters and scalar field potential --
|g 7.2.
|t Conformal cosmological perturbations --
|g 7.3.
|t Post-Newtonian field equations in conformal spacetime --
|g 7.4.
|t Residual gauge freedom in the conformal spacetime --
|g 8.
|t Decoupled system of the post-Newtonian field equations --
|g 8.1.
|t universe governed by dark matter and cosmological constant --
|g 8.2.
|t universe governed by dark energy --
|g 8.3.
|t Post-Newtonian potentials in the linearized Hubble approximation --
|g 8.4.
|t Lorentz invariance of retarded potentials --
|g 8.5.
|t Retarded solution of the sound-wave equation --
|t References.
|
533 |
|
|
|a Electronic reproduction.
|b Perth, W.A.
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
0 |
|a Celestial mechanics.
|
650 |
|
0 |
|a General relativity (Physics)
|
650 |
|
0 |
|a Astrometry.
|
700 |
1 |
|
|a Kopeikin, Sergei,
|e editor of compilation.
|
700 |
1 |
|
|a Brumberg, V. A.,
|e honouree.
|
710 |
2 |
|
|a Ebooks Corporation
|
776 |
0 |
8 |
|c Original
|z 9783110337471
|z 3110337479
|z 9783110345452
|z 3110345455
|z 9783110359329
|z 3110359324
|w (DLC) 2014017399
|
830 |
|
0 |
|a De Gruyter studies in mathematical physics ;
|v 21, 22.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=1480453
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 1
|
907 |
|
|
|a .b2753554x
|b 200414
|c 150206
|
998 |
|
|
|a uww
|b
|c m
|d z
|e y
|f eng
|g gw
|h 0
|
919 |
|
|
|a .ulebk
|b 2014-10-15
|
915 |
|
|
|a YBP DDA - Also in ProQuest Academic Complete
|
999 |
f |
f |
|i 865aee94-b735-5ee1-8cde-551331a2dba4
|s 27c4c948-7873-5f4c-90d8-3d6427657270
|t 1
|