The elementary theory of groups : a guide through the proofs of the Tarski conjectures /

Saved in:
Bibliographic Details
Corporate Author: Ebooks Corporation
Other Authors: Fine, Benjamin, 1948-
Format: Electronic eBook
Language:English
Published: Berlin ; Boston : Walter de Gruyter GmbH & Co., KG, [2014]
Series:De Gruyter expositions in mathematics ; 60
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1. Group theory and logic: introduction
  • 1.1. Group theory and logic
  • 1.2. elementary theory of groups
  • 1.3. Overview of this monograph
  • 2. Combinatorial group theory
  • 2.1. Combinatorial group theory
  • 2.2. Free groups and free products
  • 2.3. Group complexes and the fundamental group
  • 2.4. Group amalgams
  • 2.5. Subgroup theorems for amalgams
  • 2.6. Nielsen transformations
  • 2.7. Bass-Serre theory
  • 3. Geometric group theory
  • 3.1. Geometric group theory
  • 3.2. Cayley graph
  • 3.3. Dehn algorithms and small cancellation theory
  • 3.4. Hyperbolic groups
  • 3.5. Free actions on trees: arboreal group theory
  • 3.6. Automatic groups
  • 3.7. Stallings foldings and subgroups of free groups
  • 4. First order languages and model theory
  • 4.1. First order language for group theory
  • 4.2. Elementary equivalence
  • 4.3. Models and model theory
  • 4.4. Varieties and quasivarieties
  • 4.5. Filters and ultraproducts
  • 5. Tarski problems
  • 5.1. Tarski problems
  • 5.2. Initial work on the Tarski problems
  • 5.3. positive solution to the Tarski problems
  • 5.4. Tarski-like problems
  • 6. Fully residually free groups I
  • 6.1. Residually free and fully residually free groups
  • 6.2. CSA groups and commutative transitivity
  • 6.3. Universally free groups
  • 6.4. Constructions of residually free groups
  • 6.4.1. Exponential and free exponential groups
  • 6.4.2. Fully residually free groups embedded in FZ[t]
  • 6.4.3. characterization in terms of ultrapowers
  • 6.5. Structure of fully residually free groups
  • 7. Fully residually free groups II
  • 7.1. Fully residually free groups: limit groups
  • 7.1.1. Geometric limit groups
  • 7.2. JSJ-decompositions and automorphisms
  • 7.2.1. Automorphisms of fully residually free groups
  • 7.2.2. Tame automorphism groups
  • 7.2.3. isomorphism problem for limit groups
  • 7.2.4. Constructible limit groups
  • 7.2.5. Factor sets and MR-diagrams
  • 7.3. Faithful representations of limit groups
  • 7.4. Infinite words and algorithmic theory
  • 7.4.1. Zn-free groups
  • 8. Algebraic geometry over groups
  • 8.1. Algebraic geometry
  • 8.2. category of G-groups
  • 8.3. Domains and equationally Noetherian groups
  • 8.3.1. Zero divisors and G-domains
  • 8.3.2. Equationally Noetherian groups
  • 8.3.3. Separation and discrimination
  • 8.4. affine geometry of G-groups
  • 8.4.1. Algebraic sets and the Zariski topology
  • 8.4.2. Ideals of algebraic sets
  • 8.4.3. Morphisms of algebraic sets
  • 8.4.4. Coordinate groups
  • 8.4.5. Equivalence of the categories of affine algebraic sets and coordinate groups
  • 8.4.6. Zariski topology of equationally Noetherian groups
  • 8.5. theory of ideals
  • 8.5.1. Maximal and prime ideals
  • 8.5.2. Radicals and radical ideals
  • 8.5.3. Some decomposition theorems for ideals
  • 8.6. Coordinate groups
  • 8.6.1. Coordinate groups of irreducible varieties
  • 8.6.2. Decomposition theorems
  • 8.7. Nullstellensatz
  • 9. solution of the Tarski problems
  • 9.1. Tarski problems
  • 9.2. Components of the solution
  • 9.3. Tarski-Vaught test and the overall strategy
  • 9.4. Algebraic geometry and fully residually free groups
  • 9.5. Quadratic equations and quasitriangular systems
  • 9.6. Quantifier elimination and the elimination process
  • 9.7. Proof of the elementary embedding
  • 9.8. Proof of decidability
  • 10. On elementary free groups and extensions
  • 10.1. Elementary free groups
  • 10.2. Surface groups and Magnus 'theorem
  • 10.3. Questions and something for nothing
  • 10.4. Results on elementary free groups
  • 10.4.1. Hyperbolicity and stable hyperbolicity
  • 10.4.2. retract theorem and Turner groups
  • 10.4.3. Conjugacy separability of elementary free groups
  • 10.4.4. Tame automorphisms of elementary free groups
  • 10.4.5. isomorphism problem for elementary free groups
  • 10.4.6. Faithful representations in PSL(2,C)
  • 10.4.7. Elementary free groups and the Howson property
  • 10.5. Lyndon properties
  • 10.5.1. basic Lyndon properties
  • 10.5.2. Lyndon properties in amalgams
  • 10.5.3. Lyndon properties and HNN constructions
  • 10.5.4. Lyndon properties in certain one-relator groups
  • 10.5.5. Lyndon properties and tree-free groups
  • 10.6. class of BX-groups
  • 10.6.1. Big powers groups and univeral freeness
  • 11. Discriminating and squarelike groups
  • 11.1. Discriminating groups
  • 11.2. Examples of discriminating groups
  • 11.2.1. Abelian discriminating groups
  • 11.2.2. Trivially discriminating groups and universal type groups
  • 11.2.3. Nontrivially discriminating groups
  • 11.3. Negative examples: nondiscriminating groups
  • 11.3.1. Further negative examples in varieties
  • 11.4. Squarelike groups and axiomatic properties
  • 11.5. axiomatic closure property
  • 11.6. Further axiomatic information
  • 11.7. Varietal discrimination
  • 11.8. Co-discriminating groups and domains.