Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants : An Innovative Design Approach /
Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction Promulgates modelling and analysis techniques to identify opportuni...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Subjects: | |
Online Access: | Connect to this title online |
MARC
LEADER | 00000nam a22000005i 4500 | ||
---|---|---|---|
001 | b2836141 | ||
005 | 20240627104231.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 150314s2015 gw | o |||| 0|eng d | ||
020 | |a 9783319155609 | ||
024 | 7 | |a 10.1007/978-3-319-15560-9 |2 doi | |
035 | |a (DE-He213)spr2695 | ||
040 | |d UtOrBLW | ||
050 | 4 | |a TK9001-9401 | |
100 | 1 | |a Zohuri, Bahman, |e author. |0 http://id.loc.gov/authorities/names/no2011078560 | |
245 | 1 | 0 | |a Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants : |b An Innovative Design Approach / |c by Bahman Zohuri. |
264 | 1 | |a Cham : |b Springer International Publishing : |b Imprint: Springer, |c 2015. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
505 | 0 | |a Definitions and basic principles -- Properties of pure substances -- Thermodynamic cycles -- Heat transport system thermal hydraulics -- Energy resources and the role of nuclear energy -- New approach to energy conversion technology -- Gas turbine working principles -- Open air brayton gas power cycle -- Modeling the open air nuclear recuperated brayton cycle -- Modelica programming a new approach in modelling of CHP. | |
520 | |a Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction Promulgates modelling and analysis techniques to identify opportunities for increased thermodynamic efficiency and decreased water usage over current Light Water Reactor (LWR) systems Examines all power conversion aspects, from the fluid exiting the reactor to energy releases into the environment, with special focus on heat exchangers and turbo-machinery Provides examples of small projects to facilitate nuanced understanding of the theories and implementation of combined-cycle nuclear plants This book explores combined cycle driven efficiency of next generation nuclear power plants, and describes how to model and analyze a thermally heated multi-turbine power conversion system operating with atmospheric open air as the working fluid. The included studies are intended to identify paths for future work on next generation nuclear power plants (GEN-IV and beyond), leveraging advances in natural-gas-fired turbines that enable coupling salt-cooled, helium-cooled, and sodium-cooled reactors to a Nuclear Air-Brayton Combined Cycle (NACC). These reactors provide the option of operating base-load nuclear plants with variable electricity output to the grid using natural gas or stored heat to produce peak power. The author describes overall system architecture, components, and detailed modeling results of Brayton-Rankine Combined Cycle power conversion systems and Recuperated Brayton Cycle systems, since they offer the highest overall energy conversion and output efficiencies. With ever-higher temperatures predicted in new generations of power plants, this book’s investigation of potential avenues for thermodynamic efficiency gains will be of great interest to nuclear engineers and researchers, as well as power plant operators and students. | ||
650 | 0 | |a Force and energy. |0 http://id.loc.gov/authorities/subjects/sh85050452 | |
650 | 0 | |a Nuclear energy. |0 http://id.loc.gov/authorities/subjects/sh85092958 | |
650 | 0 | |a Thermodynamics. |0 http://id.loc.gov/authorities/subjects/sh85134783 | |
650 | 0 | |a Nuclear engineering. |0 http://id.loc.gov/authorities/subjects/sh85092968 | |
650 | 1 | 4 | |a Energy. |
650 | 2 | 4 | |a Nuclear Energy. |
650 | 2 | 4 | |a Thermodynamics. |
650 | 2 | 4 | |a Nuclear Engineering. |
650 | 0 | |a Power (Mechanics) |0 http://id.loc.gov/authorities/subjects/sh85105973 | |
650 | 0 | |a Power resources. |0 http://id.loc.gov/authorities/subjects/sh85105992 | |
650 | 7 | |a Force and energy. |2 fast |0 (OCoLC)fst00931575 | |
650 | 7 | |a Nuclear energy. |2 fast |0 (OCoLC)fst01039951 | |
650 | 7 | |a Thermodynamics. |2 fast |0 (OCoLC)fst01149832 | |
650 | 7 | |a Nuclear engineering. |2 fast |0 (OCoLC)fst01040032 | |
650 | 7 | |a Power (Mechanics) |2 fast |0 (OCoLC)fst01074198 | |
650 | 7 | |a Power resources. |2 fast |0 (OCoLC)fst01074275 | |
740 | 0 | |a Springer 2015 E-Book Package | |
776 | 0 | 8 | |i Printed edition: |z 9783319155593 |
856 | 4 | 0 | |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-15560-9 |z Connect to this title online |t 0 |
907 | |a .b28361416 |b 240629 |c 160414 | ||
918 | |a .bckstg |b 2016-12-01 | ||
919 | |a .ulebk |b 2016-02-22 | ||
998 | |a uww |b 160414 |c m |d z |e l |f eng |g gw |h 0 | ||
999 | f | f | |i 54c03747-b1fa-57d1-9e6d-5383a9522f4f |s 8c193f0f-d1ba-5c4e-a897-5d932020ff25 |t 0 |