Artificial Intelligent Approaches in Petroleum Geosciences /

This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to th...

Full description

Saved in:
Bibliographic Details
Other Authors: Cranganu, Constantin (Editor), Luchian, Henri (Editor), Breaban, Mihaela Elena (Editor)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b2836432
005 20240627104412.0
006 m o d
007 cr |||||||||||
008 150418s2015 gw | o |||| 0|eng d
020 |a 9783319165318 
024 7 |a 10.1007/978-3-319-16531-8  |2 doi 
035 |a (DE-He213)spr2986 
040 |d UtOrBLW 
050 4 |a TJ163.13-163.25 
245 0 0 |a Artificial Intelligent Approaches in Petroleum Geosciences /  |c edited by Constantin Cranganu, Henri Luchian, Mihaela Elena Breaban. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Intelligent Data Analysis Techniques – Machine Learning and Data Mining -- On meta-heuristics in optimization and data analysis. Application to geosciences -- Genetic Programming Techniques with Applications in the Oil and Gas Industry -- Application of Artificial Neural Networks in Geoscience and Petroleum Industry -- On Support Vector Regression to Predict Poisson’s Ratio and Young’s Modulus of Reservoir Rock -- Use of Active Learning Method to determine the presence and estimate the magnitude of abnormally pressured fluid zones: A case study from the Anadarko Basin, Oklahoma -- Active Learning Method for estimating missing logs in hydrocarbon reservoirs -- Improving the accuracy of Active Learning Method via noise injection for estimating hydraulic flow units: An example from a heterogeneous carbonate reservoir -- Well log analysis by global optimization-based interval inversion method -- Permeability estimation in petroleum reservoir by artificial intelligent methods: An overview. 
520 |a This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others. Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions, and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics, and geochemistry), data fusion, risk reduction, and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry. 
650 0 |a Force and energy.  |0 http://id.loc.gov/authorities/subjects/sh85050452 
650 0 |a Fossil fuels.  |0 http://id.loc.gov/authorities/subjects/sh85051023 
650 0 |a Mines and mineral resources.  |0 http://id.loc.gov/authorities/subjects/sh85085614 
650 0 |a Geotechnical engineering.  |0 http://id.loc.gov/authorities/subjects/sh2013000289 
650 0 |a Artificial intelligence.  |0 http://id.loc.gov/authorities/subjects/sh85008180 
650 0 |a Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh85082124 
650 1 4 |a Energy. 
650 2 4 |a Fossil Fuels (incl. Carbon Capture) 
650 2 4 |a Artificial Intelligence (incl. Robotics) 
650 2 4 |a Geotechnical Engineering & Applied Earth Sciences. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mineral Resources. 
650 0 |a Power (Mechanics)  |0 http://id.loc.gov/authorities/subjects/sh85105973 
650 0 |a Power resources.  |0 http://id.loc.gov/authorities/subjects/sh85105992 
650 7 |a Force and energy.  |2 fast  |0 (OCoLC)fst00931575 
650 7 |a Fossil fuels.  |2 fast  |0 (OCoLC)fst00933141 
650 7 |a Mines and mineral resources.  |2 fast  |0 (OCoLC)fst01022541 
650 7 |a Geotechnical engineering.  |2 fast  |0 (OCoLC)fst01893896 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Mathematical models.  |2 fast  |0 (OCoLC)fst01012085 
650 7 |a Power (Mechanics)  |2 fast  |0 (OCoLC)fst01074198 
650 7 |a Power resources.  |2 fast  |0 (OCoLC)fst01074275 
700 1 |a Cranganu, Constantin,  |e editor.  |0 http://id.loc.gov/authorities/names/n2013040317 
700 1 |a Luchian, Henri,  |e editor. 
700 1 |a Breaban, Mihaela Elena,  |e editor. 
740 0 |a Springer 2015 E-Book Package 
776 0 8 |i Printed edition:  |z 9783319165301 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-16531-8  |z Connect to this title online  |t 0 
907 |a .b28364326  |b 240629  |c 160414 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2016-02-22 
998 |a uww  |b 160414  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 9df7627d-cf14-55f3-9dce-415d2b262b6a  |s d2028708-2161-59c6-8081-91d0d4695baf  |t 0