Period Mappings with Applications to Symplectic Complex Spaces /

Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part inve...

Full description

Saved in:
Bibliographic Details
Main Author: Kirschner, Tim (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:First edition 2015.
Series:Lecture Notes in Mathematics ; 2140.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b2836711
005 20240627103336.0
006 m o d
007 cr |||||||||||
008 150915s2015 gw | o |||| 0|eng d
020 |a 9783319175218 
024 7 |a 10.1007/978-3-319-17521-8  |2 doi 
035 |a (DE-He213)spr3265 
040 |d UtOrBLW 
050 4 |a QA564-609 
100 1 |a Kirschner, Tim,  |e author.  |0 http://id.loc.gov/authorities/names/nb2015021431 
245 1 0 |a Period Mappings with Applications to Symplectic Complex Spaces /  |c by Tim Kirschner. 
250 |a First edition 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2140 
520 |a Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely. 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Geometry, Algebraic.  |0 http://id.loc.gov/authorities/subjects/sh85054140 
650 0 |a Categories (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85020992 
650 0 |a Algebra, Homological.  |0 http://id.loc.gov/authorities/subjects/sh85003432 
650 0 |a Functions of complex variables.  |0 http://id.loc.gov/authorities/subjects/sh85052356 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Category Theory, Homological Algebra. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Categories (Mathematics)  |2 fast  |0 (OCoLC)fst00849000 
650 7 |a Algebra, Homological.  |2 fast  |0 (OCoLC)fst00804927 
650 7 |a Functions of complex variables.  |2 fast  |0 (OCoLC)fst00936116 
740 0 |a Springer 2015 E-Book Package 
776 0 8 |i Printed edition:  |z 9783319175201 
830 0 |a Lecture Notes in Mathematics ;  |v 2140. 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-17521-8  |z Connect to this title online  |t 0 
907 |a .b2836711x  |b 240629  |c 160414 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2016-02-22 
998 |a uww  |b 160414  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 7792f2cf-5a24-502a-9dc7-866461bb53af  |s eae60cfe-048d-5c90-84b7-2f88a55b05ef  |t 0