Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces : A Sharp Theory /

Systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizati...

Full description

Saved in:
Bibliographic Details
Main Authors: Alvarado, Ryan (Author), Mitrea, Marius (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Lecture Notes in Mathematics ; 2142.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b2836873
005 20240627104044.0
006 m o d
007 cr |||||||||||
008 150609s2015 gw | o |||| 0|eng d
020 |a 9783319181325 
024 7 |a 10.1007/978-3-319-18132-5  |2 doi 
035 |a (DE-He213)spr3427 
040 |d UtOrBLW 
050 4 |a QA403.5-404.5 
100 1 |a Alvarado, Ryan,  |e author.  |0 http://id.loc.gov/authorities/names/nb2015016452 
245 1 0 |a Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces :  |b A Sharp Theory /  |c by Ryan Alvarado, Marius Mitrea. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2142 
505 0 |a Introduction. - Geometry of Quasi-Metric Spaces -- Analysis on Spaces of Homogeneous Type -- Maximal Theory of Hardy Spaces -- Atomic Theory of Hardy Spaces -- Molecular and Ionic Theory of Hardy Spaces -- Further Results -- Boundedness of Linear Operators Defined on Hp(X) -- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces. 
520 |a Systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for an audience of mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry. 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Fourier analysis.  |0 http://id.loc.gov/authorities/subjects/sh85051088 
650 0 |a Functional analysis.  |0 http://id.loc.gov/authorities/subjects/sh85052312 
650 0 |a Measure theory.  |0 http://id.loc.gov/authorities/subjects/sh85082702 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 0 |a Functions of real variables.  |0 http://id.loc.gov/authorities/subjects/sh85052357 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Partial Differential Equations. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Fourier analysis.  |2 fast  |0 (OCoLC)fst00933401 
650 7 |a Functional analysis.  |2 fast  |0 (OCoLC)fst00936061 
650 7 |a Measure theory.  |2 fast  |0 (OCoLC)fst01013175 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a Functions of real variables.  |2 fast  |0 (OCoLC)fst00936120 
700 1 |a Mitrea, Marius,  |e author.  |0 http://id.loc.gov/authorities/names/n94020722 
740 0 |a Springer 2015 E-Book Package 
776 0 8 |i Printed edition:  |z 9783319181318 
830 0 |a Lecture Notes in Mathematics ;  |v 2142. 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-18132-5  |z Connect to this title online  |t 0 
907 |a .b28368733  |b 240629  |c 160414 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2016-02-22 
998 |a uww  |b 160414  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 781ee85e-afd2-51a8-88c2-908e5ebb3bc2  |s d57f64de-ee6d-5a3d-b4d7-e82b50f604e1  |t 0