Hidden Markov processes : theory and applications to biology /

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematica...

Full description

Saved in:
Bibliographic Details
Main Author: Vidyasagar, M. (Mathukumalli), 1947- (Author)
Format: Electronic eBook
Language:English
Published: Princeton : Princeton University Press, [2014]
Series:Princeton series in applied mathematics.
Subjects:
Online Access:Connect to this title online (unlimited users allowed)

MARC

LEADER 00000cam a2200000Mi 4500
001 b2948895
005 20191002071213.0
006 m o d
007 cr |n|||||||||
008 140820t20142014nju ob 001 0 eng d
020 |a 1400850517  |q (electronic bk.) 
020 |a 9781400850518  |q (electronic bk.) 
020 |z 9780691133157  |q (hardcover ;  |q alk. paper) 
020 |z 0691133158  |q (hardcover ;  |q alk. paper) 
024 7 |a 10.1515/9781400850518  |2 doi 
035 |a (OCoLC)888550795  |z (OCoLC)885122066  |z (OCoLC)961661291  |z (OCoLC)981888551  |z (OCoLC)992864635  |z (OCoLC)999360571  |z (OCoLC)1002061164  |z (OCoLC)1004466351  |z (OCoLC)1004809239  |z (OCoLC)1005042890  |z (OCoLC)1008914583  |z (OCoLC)1013742683  |z (OCoLC)1017966175  |z (OCoLC)1021221160  |z (OCoLC)1058202122  |z (OCoLC)1066498893 
035 |a (OCoLC)jdda888550795 
037 |a 22573/ctt6dtx6g  |b JSTOR 
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d N$T  |d JSTOR  |d OCLCQ  |d OCLCF  |d EBLCP  |d IDEBK  |d E7B  |d TXM  |d DEBSZ  |d DEBBG  |d OCLCQ  |d CUS  |d COO  |d COCUF  |d OCLCQ  |d UIU  |d S4S  |d MOR  |d CCO  |d PIFAG  |d OTZ  |d ZCU  |d MERUC  |d OCLCQ  |d SAV  |d OCLCQ  |d LGG  |d IOG  |d DEGRU  |d CUY  |d U3W  |d EZ9  |d STF  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d LVT  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d UtOrBLW 
049 |a STAW 
050 4 |a QH324.2  |b .V54 2014 
100 1 |a Vidyasagar, M.  |q (Mathukumalli),  |d 1947-  |e author.  |0 http://id.loc.gov/authorities/names/n84045052 
245 1 0 |a Hidden Markov processes :  |b theory and applications to biology /  |c M. Vidyasagar. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xiv, 287 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Princeton series in applied mathematics 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t PART 1. Preliminaries --  |t Chapter One. Introduction to Probability and Random Variables --  |t Chapter Two. Introduction to Information Theory --  |t Chapter Three. Nonnegative Matrices --  |t PART 2. Hidden Markov Processes --  |t Chapter Four. Markov Processes --  |t Chapter Five. Introduction to Large Deviation Theory --  |t Chapter Six. Hidden Markov Processes: Basic Properties --  |t Chapter Seven. Hidden Markov Processes: The Complete Realization Problem --  |t PART 3. Applications to Biology --  |t Chapter Eight. Some Applications to Computational Biology --  |t Chapter Nine. BLAST Theory --  |t Bibliography --  |t Index --  |t Backmatter. 
520 |a This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. 
546 |a In English. 
588 0 |a Print version record. 
650 0 |a Computational biology.  |0 http://id.loc.gov/authorities/subjects/sh2003008355 
650 0 |a Markov processes.  |0 http://id.loc.gov/authorities/subjects/sh85081369 
650 7 |a Computational biology.  |2 fast  |0 (OCoLC)fst00871990  |0 http://id.worldcat.org/fast/871990 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347  |0 http://id.worldcat.org/fast/1010347 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Vidyasagar, M. (Mathukumalli), 1947-  |t Hidden Markov processes.  |d Princeton : Princeton University Press, [2014]  |z 9780691133157  |w (DLC) 2014009277  |w (OCoLC)861542555 
830 0 |a Princeton series in applied mathematics.  |0 http://id.loc.gov/authorities/names/no2002046464 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://www.jstor.org/stable/10.2307/j.ctt6wq0db  |z Connect to this title online (unlimited users allowed)  |t 0 
907 |a .b29488953  |b 241001  |c 160913 
916 |a JSTOR DDA Purchased 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 190717  |c m  |d z   |e l  |f eng  |g nju  |h 0 
999 f f |i 143510ae-da05-5c98-b6bc-ba2aa395cbe7  |s ead7c587-2fb9-53c3-8d18-26caacdd9991  |t 0