Machine Learning Paradigms : Artificial Immune Systems and their Applications in Software Personalization /

The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented...

Full description

Saved in:
Bibliographic Details
Main Authors: Sotiropoulos, Dionisios N. (Author), Tsihrintzis, George A. (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Intelligent systems reference library ; 118.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3110209
005 20240627104311.0
006 m o d
007 cr |||||||||||
008 161026s2017 gw | o |||| 0|eng d
020 |a 9783319471945 
024 7 |a 10.1007/978-3-319-47194-5  |2 doi 
035 |a (DE-He213)spr978-3-319-47194-5 
040 |d UtOrBLW 
050 4 |a Q342 
100 1 |a Sotiropoulos, Dionisios N.,  |e author.  |0 http://id.loc.gov/authorities/names/no2019133518 
245 1 0 |a Machine Learning Paradigms :  |b Artificial Immune Systems and their Applications in Software Personalization /  |c by Dionisios N. Sotiropoulos, George A. Tsihrintzis. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 118 
505 0 |a Introduction -- Machine Learning -- The Class Imbalance Problem -- Addressing the Class Imbalance Problem -- Machine Learning Paradigms -- Immune System Fundamentals -- Artificial Immune Systems -- Experimental Evaluation of Artificial Immune System-based Learning Algorithms -- Conclusions and Future Work. 
520 |a The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented as a valid metaphor towards the creation of abstract and high level representations of biological components or functions that lay the foundations for an alternative machine learning paradigm. Therefore, focus is given on addressing the primary problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms for the problems of Clustering, Classification and One-Class Classification. Pattern Classification, in particular, is studied within the context of the Class Imbalance Problem. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is exceptionally evolved in order to continuously address an extremely unbalanced pattern classification problem, namely, the self / non-self discrimination process. The experimental results presented in this monograph involve a wide range of degenerate binary classification problems where the minority class of interest is to be recognized against the vast volume of the majority class of negative patterns. In this context, Artificial Immune Systems are utilized for the development of personalized software as the core mechanism behind the implementation of Recommender Systems. The book will be useful to researchers, practitioners and graduate students dealing with Pattern Recognition and Machine Learning and their applications in Personalized Software and Recommender Systems. It is intended for both the expert/researcher in these fields, as well as for the general reader in the field of Computational Intelligence and, more generally, Computer Science who wishes to learn more about the field of Intelligent Computing Systems and its applications. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her. 
650 0 |a Artificial intelligence.  |0 http://id.loc.gov/authorities/subjects/sh85008180 
650 0 |a Computational intelligence.  |0 http://id.loc.gov/authorities/subjects/sh94004659 
650 0 |a Engineering.  |0 http://id.loc.gov/authorities/subjects/sh85043176 
650 1 4 |a Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics) 
650 2 4 |a Computational Intelligence. 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computational intelligence.  |2 fast  |0 (OCoLC)fst00871995 
650 7 |a Engineering.  |2 fast  |0 (OCoLC)fst00910312 
700 1 |a Tsihrintzis, George A.,  |e author.  |0 http://id.loc.gov/authorities/names/nb2008014822 
740 0 |a Springer Engineering 
776 0 8 |i Printed edition:  |z 9783319471921 
830 0 |a Intelligent systems reference library ;  |v 118.  |0 http://id.loc.gov/authorities/names/no2009180237 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-47194-5  |z Connect to this title online  |t 0 
907 |a .b31102098  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 9c046a36-f408-5440-9c1d-896fd9412e91  |s 6f72774e-037f-56a6-8bb9-b496ffd1d056  |t 0