Biomechanical Microsystems : Design, Processing and Applications /
This book presents the most important aspects of analysis of dynamical processes taking place on the human body surface. It provides an overview of the major devices that act as a prevention measure to boost a person‘s motivation for physical activity. A short overview of the most popular MEMS senso...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Series: | Lecture notes in computational vision and biomechanics ;
24. |
Subjects: | |
Online Access: | Connect to this title online |
MARC
LEADER | 00000nam a22000005i 4500 | ||
---|---|---|---|
001 | b3110525 | ||
005 | 20240627104209.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 170327s2017 gw | o |||| 0|eng d | ||
020 | |a 9783319548494 | ||
024 | 7 | |a 10.1007/978-3-319-54849-4 |2 doi | |
035 | |a (DE-He213)spr978-3-319-54849-4 | ||
040 | |d UtOrBLW | ||
050 | 4 | |a R856-857 | |
100 | 1 | |a Ostasevicius, Vytautas, |e author. |0 http://id.loc.gov/authorities/names/nb2011000015 | |
245 | 1 | 0 | |a Biomechanical Microsystems : |b Design, Processing and Applications / |c by Vytautas Ostasevicius, Giedrius Janusas, Arvydas Palevicius, Rimvydas Gaidys, Vytautas Jurenas. |
264 | 1 | |a Cham : |b Springer International Publishing : |b Imprint: Springer, |c 2017. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a Lecture Notes in Computational Vision and Biomechanics, |x 2212-9391 ; |v 24 | |
505 | 0 | |a Introduction -- Development of Microsystems Multi Physics Investigation Methods -- MEMS applications for obesity prevention -- MOEMS-assisted radial pulse measurement system development -- Microsystems for the Effective Technological Processes. | |
520 | |a This book presents the most important aspects of analysis of dynamical processes taking place on the human body surface. It provides an overview of the major devices that act as a prevention measure to boost a person‘s motivation for physical activity. A short overview of the most popular MEMS sensors for biomedical applications is given. The development and validation of a multi-level computational model that combines mathematical models of an accelerometer and reduced human body surface tissue is presented. Subsequently, results of finite element analysis are used together with experimental data to evaluate rheological properties of not only human skin but skeletal joints as well. Methodology of development of MOEMS displacement-pressure sensor and adaptation for real-time biological information monitoring, namely “ex vivo” and “in vitro” blood pulse type analysis, is described. Fundamental and conciliatory investigations, achieved knowledge and scientific experience about biologically adaptive multifunctional nanocomposite materials, their properties and synthesis compatibility, periodical microstructures, which may be used in various optical components for modern, productive sensors‘ formation technologies and their application in medicine, pharmacy industries and environmental monitoring, are presented and analyzed. This book also is aimed at research and development of vibrational energy harvester, which would convert ambient kinetic energy into electrical energy by means of the impact-type piezoelectric transducer. The book proposes possible prototypes of devices for non-invasive real-time artery pulse measurements and micro energy harvesting. | ||
650 | 0 | |a Biomedical engineering. |0 http://id.loc.gov/authorities/subjects/sh85014237 | |
650 | 0 | |a Energy harvesting. |0 http://id.loc.gov/authorities/subjects/sh2010001757 | |
650 | 0 | |a Engineering. |0 http://id.loc.gov/authorities/subjects/sh85043176 | |
650 | 0 | |a Mechatronics. |0 http://id.loc.gov/authorities/subjects/sh93001518 | |
650 | 0 | |a Nanotechnology. |0 http://id.loc.gov/authorities/subjects/sh91001490 | |
650 | 1 | 4 | |a Engineering. |
650 | 2 | 4 | |a Biomedical Engineering. |
650 | 2 | 4 | |a Energy Harvesting. |
650 | 2 | 4 | |a Mechatronics. |
650 | 2 | 4 | |a Nanotechnology and Microengineering. |
650 | 7 | |a Biomedical engineering. |2 fast |0 (OCoLC)fst00832568 | |
650 | 7 | |a Energy harvesting. |2 fast |0 (OCoLC)fst01750045 | |
650 | 7 | |a Engineering. |2 fast |0 (OCoLC)fst00910312 | |
650 | 7 | |a Mechatronics. |2 fast |0 (OCoLC)fst01013514 | |
650 | 7 | |a Nanotechnology. |2 fast |0 (OCoLC)fst01032639 | |
700 | 1 | |a Gaidys, Rimvydas, |e author. |0 http://id.loc.gov/authorities/names/n2017189071 | |
700 | 1 | |a Janusas, Giedrius, |e author. |0 http://id.loc.gov/authorities/names/n2017189069 | |
700 | 1 | |a Jurenas, Vytautas, |e author. |0 http://id.loc.gov/authorities/names/n2017189072 | |
700 | 1 | |a Palevicius, Arvydas, |e author. |0 http://id.loc.gov/authorities/names/n2017189070 | |
740 | 0 | |a Springer Engineering | |
776 | 0 | 8 | |i Printed edition: |z 9783319548487 |
830 | 0 | |a Lecture notes in computational vision and biomechanics ; |v 24. |0 http://id.loc.gov/authorities/names/no2012101449 | |
856 | 4 | 0 | |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-54849-4 |z Connect to this title online |t 0 |
907 | |a .b31105257 |b 240629 |c 171208 | ||
918 | |a .bckstg |b 2016-12-01 | ||
919 | |a .ulebk |b 2017-02-14 | ||
998 | |a uww |b 171208 |c m |d z |e l |f eng |g gw |h 0 | ||
999 | f | f | |i b10fbf1d-5a67-57a7-92cf-5ed8ff87457a |s 78ec45ab-b0aa-57aa-b2e3-7f3167550a0b |t 0 |