Neuromorphic Cognitive Systems : A Learning and Memory Centered Approach /

This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, includi...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, Qiang (Author), Hu, Jun (Author), Tan Chen, Kay (Author), Tang, Huajin (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Intelligent systems reference library ; 126.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3110543
005 20240627104159.0
006 m o d
007 cr |||||||||||
008 170504s2017 gw | o |||| 0|eng d
020 |a 9783319553108 
024 7 |a 10.1007/978-3-319-55310-8  |2 doi 
035 |a (DE-He213)spr978-3-319-55310-8 
040 |d UtOrBLW 
050 4 |a Q342 
100 1 |a Yu, Qiang,  |e author.  |0 http://id.loc.gov/authorities/names/nr2001037911 
245 1 0 |a Neuromorphic Cognitive Systems :  |b A Learning and Memory Centered Approach /  |c by Qiang Yu, Huajin Tang, Jun Hu, Kay Tan Chen. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 126 
505 0 |a Introduction -- Rapid Feedforward Computation by Temporal Encoding and Learning with Spiking Neurons -- A Spike-Timing Based Integrated Model for Pattern Recognition -- Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns -- A Spiking Neural Network System for Robust Sequence Recognition -- Temporal Learning in Multilayer Spiking Neural Networks Through Construction of Causal Connections -- A Hierarchically Organized Memory Model with Temporal Population Coding -- Spiking Neuron Based Cognitive Memory Model. 
520 |a This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromorphic cognitive systems are urgently needed. The topics covered in this book range from the neuronal level to the system level. In the neuronal level, synaptic adaptation plays an important role in learning patterns. In order to perform higher-level cognitive functions such as recognition and memory, spiking neurons with learning abilities are consistently integrated, building a system with encoding, learning and memory functionalities. The book describes these aspects in detail. 
650 0 |a Artificial intelligence.  |0 http://id.loc.gov/authorities/subjects/sh85008180 
650 0 |a Computational intelligence.  |0 http://id.loc.gov/authorities/subjects/sh94004659 
650 0 |a Engineering.  |0 http://id.loc.gov/authorities/subjects/sh85043176 
650 0 |a Neurosciences.  |0 http://id.loc.gov/authorities/subjects/sh91006099 
650 1 4 |a Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics) 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Neurosciences. 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computational intelligence.  |2 fast  |0 (OCoLC)fst00871995 
650 7 |a Engineering.  |2 fast  |0 (OCoLC)fst00910312 
650 7 |a Neurosciences.  |2 fast  |0 (OCoLC)fst01036509 
700 1 |a Hu, Jun,  |e author.  |0 http://id.loc.gov/authorities/names/n86079707 
700 1 |a Tan Chen, Kay,  |e author. 
700 1 |a Tang, Huajin,  |e author.  |0 http://id.loc.gov/authorities/names/nb2007008032 
740 0 |a Springer Engineering 
776 0 8 |i Printed edition:  |z 9783319553085 
830 0 |a Intelligent systems reference library ;  |v 126.  |0 http://id.loc.gov/authorities/names/no2009180237 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-55310-8  |z Connect to this title online  |t 0 
907 |a .b31105439  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 7005a00c-5773-5935-bbf2-28566de23879  |s 5b0e5d39-8725-51ca-a8b1-81aa9386b4e8  |t 0