Elements of Nonlinear Time Series Analysis and Forecasting /

This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can...

Full description

Saved in:
Bibliographic Details
Main Author: Gooijer, Jan (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Springer series in statistics.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3110930
005 20240627104020.0
006 m o d
007 cr |||||||||||
008 170330s2017 gw | o |||| 0|eng d
020 |a 9783319432526 
024 7 |a 10.1007/978-3-319-43252-6  |2 doi 
035 |a (DE-He213)spr978-3-319-43252-6 
040 |d UtOrBLW 
050 4 |a QA276-280 
100 1 |a Gooijer, Jan,  |e author.  |0 http://id.loc.gov/authorities/names/no2019166479 
245 1 0 |a Elements of Nonlinear Time Series Analysis and Forecasting /  |c by Jan G. De Gooijer. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Introduction and Some Basic Concepts -- Classic Nonlinear Models -- Probabilistic Properties -- Frequency-Domain Tests -- Time-Domain Linearity Tests -- Model Estimation, Selection and Checking -- Tests for Serial Independence -- Time-Reversibility -- Semi- and Nonparametric Forecasting -- Forecasting Vector Parametric Models and Methods -- Vector Semi- and Nonparametric Methods. . 
520 |a This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual. . 
650 0 |a Statistics.  |0 http://id.loc.gov/authorities/subjects/sh85127580 
650 1 4 |a Statistics. 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01132103 
740 0 |a Springer Mathematics and Statistics 
776 0 8 |i Printed edition:  |z 9783319432519 
830 0 |a Springer series in statistics.  |0 http://id.loc.gov/authorities/names/n42023188 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-43252-6  |z Connect to this title online  |t 0 
907 |a .b31109305  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 22f29192-bb00-59a8-902a-7b17c880c681  |s e78bbf1e-49a0-5f7e-ba3f-17f40c8fc765  |t 0