Convex Analysis and Monotone Operator Theory in Hilbert Spaces /

This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the...

Full description

Saved in:
Bibliographic Details
Main Authors: Bauschke, Heinz H. (Author), Combettes, Patrick L. (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:Second edition 2017.
Series:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3110946
005 20240627104410.0
006 m o d
007 cr |||||||||||
008 170301s2017 gw | o |||| 0|eng d
020 |a 9783319483115 
024 7 |a 10.1007/978-3-319-48311-5  |2 doi 
035 |a (DE-He213)spr978-3-319-48311-5 
040 |d UtOrBLW 
050 4 |a QA315-316 
100 1 |a Bauschke, Heinz H.,  |e author.  |0 http://id.loc.gov/authorities/names/no2011104744 
245 1 0 |a Convex Analysis and Monotone Operator Theory in Hilbert Spaces /  |c by Heinz H. Bauschke, Patrick L. Combettes. 
250 |a Second edition 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
505 0 |a Background -- Hilbert Spaces -- Convex Sets -- Convexity and Notation of Nonexpansiveness -- Fejer Monotonicity and Fixed Point Iterations -- Convex Cones and Generalized Interiors -- Support Functions and Polar Sets -- Convex Functions -- Lower Semicontinuous Convex Functions -- Convex Functions: Variants -- Convex Minimization Problems -- Infimal Convolution -- Conjugation -- Further Conjugation Results -- Fenchel-Rockafellar Duality -- Subdifferentiability of Convex Functions -- Differentiability of Convex Functions -- Further Differentiability Results -- Duality in Convex Optimization -- Monotone Operators -- Finer Properties of Monotone Operators -- Stronger Notions of Monotonicity -- Resolvents of Monotone Operators -- Proximity Operators -- Sums of Monotone Operators -- Zeros of Sums of Monotone Operators -- Fermat's Rule in Convex Optimization -- Proximal Minimization -- Projection Operators -- Best Approximation Algorithms. 
520 |a This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016. 
650 0 |a Algorithms.  |0 http://id.loc.gov/authorities/subjects/sh85003487 
650 0 |a Calculus of variations.  |0 http://id.loc.gov/authorities/subjects/sh85018809 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Visualization.  |0 http://id.loc.gov/authorities/subjects/sh85143939 
650 1 4 |a Mathematics. 
650 2 4 |a Algorithms. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Visualization. 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Calculus of variations.  |2 fast  |0 (OCoLC)fst00844140 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Visualization.  |2 fast  |0 (OCoLC)fst01168121 
700 1 |a Combettes, Patrick L.,  |e author.  |0 http://id.loc.gov/authorities/names/no2011116125 
740 0 |a Springer Mathematics and Statistics 
776 0 8 |i Printed edition:  |z 9783319483108 
830 0 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC. 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-48311-5  |z Connect to this title online  |t 0 
907 |a .b31109469  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i c0931ef3-11d7-56bb-b5f6-dd2427609ebd  |s 906b1971-b59d-56f4-964c-fe1aa88c41b3  |t 0