Monoidal Categories and Topological Field Theory /

This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spher...

Full description

Saved in:
Bibliographic Details
Main Authors: Turaev, V. G. (Vladimir G.), 1954- (Author), Virelizier, Alexis (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Series:Progress in Mathematics, 322
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3110956
005 20240627103834.0
006 m o d
007 cr |||||||||||
008 170628s2017 gw | o |||| 0|eng d
020 |a 9783319498348 
024 7 |a 10.1007/978-3-319-49834-8  |2 doi 
035 |a (DE-He213)spr978-3-319-49834-8 
040 |d UtOrBLW 
050 4 |a QA169 
100 1 |a Turaev, V. G.  |q (Vladimir G.),  |d 1954-  |e author.  |0 http://id.loc.gov/authorities/names/n94048043 
245 1 0 |a Monoidal Categories and Topological Field Theory /  |c by Vladimir Turaev, Alexis Virelizier. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 322 
505 0 |a Introduction -- Part I: Monoidal Categories -- Part 2: Hopf Algebras and Monads -- Part 3: State Sum Topological Field Theory -- Part 4: Graph Topological Field Theory -- Appendices -- Bibliography -- Index. 
520 |a This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads. 
650 0 |a Categories (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85020992 
650 0 |a Complex manifolds.  |0 http://id.loc.gov/authorities/subjects/sh85029371 
650 0 |a Algebra, Homological.  |0 http://id.loc.gov/authorities/subjects/sh85003432 
650 0 |a Manifolds (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85080549 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 1 4 |a Mathematics. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 7 |a Categories (Mathematics)  |2 fast  |0 (OCoLC)fst00849000 
650 7 |a Complex manifolds.  |2 fast  |0 (OCoLC)fst00871593 
650 7 |a Algebra, Homological.  |2 fast  |0 (OCoLC)fst00804927 
650 7 |a Manifolds (Mathematics)  |2 fast  |0 (OCoLC)fst01007726 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
700 1 |a Virelizier, Alexis,  |e author.  |0 http://id.loc.gov/authorities/names/no2017108174 
740 0 |a Springer Mathematics and Statistics 
776 0 8 |i Printed edition:  |z 9783319498331 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-49834-8  |z Connect to this title online  |t 0 
907 |a .b31109561  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 0557d7f6-79cf-5eab-b749-809828475d39  |s d881573a-095a-5743-a70d-f119bb662f43  |t 0