Stochastic Optimal Control in Infinite Dimension : Dynamic Programming and HJB Equations /

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general...

Full description

Saved in:
Bibliographic Details
Main Authors: Fabbri, Giorgio (Author), Gozzi, Fausto (Author), Święch, Andrzej (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:Probability theory and stochastic modelling ; 82.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3111004
005 20240627104150.0
006 m o d
007 cr |||||||||||
008 170623s2017 gw | o |||| 0|eng d
020 |a 9783319530673 
024 7 |a 10.1007/978-3-319-53067-3  |2 doi 
035 |a (DE-He213)spr978-3-319-53067-3 
040 |d UtOrBLW 
050 4 |a QA315-316 
100 1 |a Fabbri, Giorgio,  |e author.  |0 http://id.loc.gov/authorities/names/no2001082365 
245 1 0 |a Stochastic Optimal Control in Infinite Dimension :  |b Dynamic Programming and HJB Equations /  |c by Giorgio Fabbri, Fausto Gozzi, Andrzej Święch. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 82 
505 0 |a Preface -- 1.Preliminaries on stochastic calculus in infinite dimensions -- 2.Optimal control problems and examples -- 3.Viscosity solutions -- 4.Mild solutions in spaces of continuous functions -- 5.Mild solutions in L2 spaces -- 6.HJB Equations through Backward Stochastic Differential Equations (by M. Fuhrman and G. Tessitore) -- Appendix A, B, C, D, E -- Bibliography. 
520 |a Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces. 
650 0 |a Calculus of variations.  |0 http://id.loc.gov/authorities/subjects/sh85018809 
650 0 |a Functional analysis.  |0 http://id.loc.gov/authorities/subjects/sh85052312 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 0 |a Probabilities.  |0 http://id.loc.gov/authorities/subjects/sh85107090 
650 0 |a System theory.  |0 http://id.loc.gov/authorities/subjects/sh85131743 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Systems Theory, Control. 
650 7 |a Calculus of variations.  |2 fast  |0 (OCoLC)fst00844140 
650 7 |a Functional analysis.  |2 fast  |0 (OCoLC)fst00936061 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
650 7 |a System theory.  |2 fast  |0 (OCoLC)fst01141423 
700 1 |a Gozzi, Fausto,  |e author.  |0 http://id.loc.gov/authorities/names/n86024182 
700 1 |a Święch, Andrzej,  |e author. 
740 0 |a Springer Mathematics and Statistics 
776 0 8 |i Printed edition:  |z 9783319530666 
830 0 |a Probability theory and stochastic modelling ;  |v 82.  |0 http://id.loc.gov/authorities/names/no2014110414 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-319-53067-3  |z Connect to this title online  |t 0 
907 |a .b31110046  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i 3d0f476c-e08f-555a-b6be-5a82c555632e  |s fd626179-1f78-50af-8fe2-98eafa2aa03a  |t 0