Algebraic Theory of Locally Nilpotent Derivations /

This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a...

Full description

Saved in:
Bibliographic Details
Main Author: Freudenburg, Gene (Author)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2017.
Edition:Second edition 2017.
Series:Encyclopaedia of mathematical sciences ; 136.3.
Subjects:
Online Access:Connect to this title online

MARC

LEADER 00000nam a22000005i 4500
001 b3111217
005 20240627103956.0
006 m o d
007 cr |||||||||||
008 170909s2017 gw | o |||| 0|eng d
020 |a 9783662553503 
024 7 |a 10.1007/978-3-662-55350-3  |2 doi 
035 |a (DE-He213)spr978-3-662-55350-3 
040 |d UtOrBLW 
050 4 |a QA251.3 
100 1 |a Freudenburg, Gene,  |e author.  |0 http://id.loc.gov/authorities/names/no2006120872 
245 1 0 |a Algebraic Theory of Locally Nilpotent Derivations /  |c by Gene Freudenburg. 
246 3 |a Invariant Theory and Algebraic Transformation Groups VII 
250 |a Second edition 2017. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 136.3 
505 0 |a Introduction -- 1 First Principles -- 2 Further Properties of LNDs -- 3 Polynomial Rings -- 4 Dimension Two -- 5 Dimension Three -- 6 Linear Actions of Unipotent Groups -- 7 Non-Finitely Generated Kernels -- 8 Algorithms -- 9 Makar-Limanov and Derksen Invariants -- 10 Slices, Embeddings and Cancellation -- 11 Epilogue -- References -- Index. 
520 |a This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factorization of quotient morphisms, and a more extended treatment of linear actions. The reader will also find a wealth of examples and open problems and an updated resource for future investigations. 
650 0 |a Geometry, Algebraic.  |0 http://id.loc.gov/authorities/subjects/sh85054140 
650 0 |a Commutative algebra.  |0 http://id.loc.gov/authorities/subjects/sh85029267 
650 0 |a Commutative rings.  |0 http://id.loc.gov/authorities/subjects/sh85029269 
650 0 |a Lie groups.  |0 http://id.loc.gov/authorities/subjects/sh85076786 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Topological groups.  |0 http://id.loc.gov/authorities/subjects/sh85136082 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Topological Groups, Lie Groups. 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Commutative algebra.  |2 fast  |0 (OCoLC)fst00871202 
650 7 |a Commutative rings.  |2 fast  |0 (OCoLC)fst00871205 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Topological groups.  |2 fast  |0 (OCoLC)fst01152684 
740 0 |a Springer Mathematics and Statistics 
776 0 8 |i Printed edition:  |z 9783662553480 
830 0 |a Encyclopaedia of mathematical sciences ;  |v 136.3.  |0 http://id.loc.gov/authorities/names/n86748513 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://dx.doi.org/10.1007/978-3-662-55350-3  |z Connect to this title online  |t 0 
907 |a .b31112171  |b 240629  |c 171208 
918 |a .bckstg  |b 2016-12-01 
919 |a .ulebk  |b 2017-02-14 
998 |a uww  |b 171208  |c m  |d z   |e l  |f eng  |g gw   |h 0 
999 f f |i e9191d74-7721-589d-bef1-76bb1507a552  |s 18e0d257-fdad-5e27-b923-2ae78ccd6630  |t 0