|
|
|
|
LEADER |
00000nam a2200000Ma 4500 |
001 |
b3145691 |
003 |
CStclU |
005 |
20180202141838.5 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
180105s2018 flu o 000 0 eng d |
020 |
|
|
|a 1439873585
|q (electronic bk.)
|
020 |
|
|
|a 9781482262414
|q (electronic bk.)
|
020 |
|
|
|a 148226241X
|q (electronic bk.)
|
020 |
|
|
|a 9781439873588
|q (electronic bk.)
|
020 |
|
|
|z 1568812329
|
020 |
|
|
|z 9781568812328
|
020 |
|
|
|z 1138563064
|
020 |
|
|
|z 9781138563063
|
035 |
|
|
|a (NhCcYBP)ebc5205760
|
037 |
|
|
|a 5205760
|b Proquest Ebook Central
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a QA166.8
|b .L36 2018
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516/.132
|2 23
|
100 |
1 |
|
|a Lang, Robert J. (Robert James), 1961- author.
|
245 |
1 |
0 |
|a Twists, tilings, and tessellations :
|b mathematical methods for geometric origami /
|c Robert J. Lang.
|
260 |
|
|
|a Boca Raton, FL :
|b CRC Press
|c 2018.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Genesis * --
|g 2.
|t What to Expect and What You Need * --
|g 1.1.
|t Modeling Origami * --
|g 1.1.1.
|t Crease Patterns * --
|g 1.1.2.
|t Creases and Folds * --
|g 1.2.
|t Vertices * --
|g 1.2.1.
|t Kawasaki-Justin Theorem * --
|g 1.2.2.
|t Justin Ordering Conditions * --
|g 1.2.3.
|t Three Facet Theorem * --
|g 1.2.4.
|t Big-Little-Big Angle Theorem * --
|g 1.2.5.
|t Maekawa-Justin Theorem * --
|g 1.2.6.
|t Vertex Type * --
|g 1.2.7.
|t Vertex Validity * --
|g 1.3.
|t Degree-2 Vertices * --
|g 1.4.
|t Degree-4 Vertices * --
|g 1.4.1.
|t Unique Smallest Sector * --
|g 1.4.2.
|t Two Consecutive Smallest Sectors * --
|g 1.4.3.
|t Four Equal Sectors * --
|g 1.4.4.
|t Constructing Degree-4 Vertices * --
|g 1.4.5.
|t Half-Plane Properties * --
|g 1.5.
|t Multivertex Flat-Foldability ** --
|g 1.5.1.
|t Isometry Conditions and Semifoldability ** --
|g 1.5.2.
|t Injectivity Conditions and Non Twist Relation ** --
|g 1.5.3.
|t Local Flat-Foldability Graph ** --
|g 1.6.
|t Vector Formulations of Vertices * * * --
|g 1.6.1.
|t Vector Notation: Points * * * --
|g 1.6.2.
|t Vector Notation: Lines *** --
|g 1.6.3.
|t Translation * * * --
|g 1.6.4.
|t Rotation *** --
|g 1.6.5.
|t Reflection *** --
|g 1.6.6.
|t Line Intersection * * * --
|g 1.6.7.
|t 2D Developability * ** --
|g 1.6.8.
|t 2D Flat-Foldability * * * --
|g 1.6.9.
|t Analytic versus Numerical * * * --
|g 1.7.
|t Terms * --
|g 2.1.
|t Repeating Vertices * --
|g 2.2.
|t 1D Periodicity * --
|g 2.2.1.
|t Periodicity and Symmetry * --
|g 2.2.2.
|t Tiles * --
|g 2.2.3.
|t Linear Chains * --
|g 2.3.
|t 2D Periodicity * --
|g 2.3.1.
|t Huffman Grid * --
|g 2.3.2.
|t Yoshimura Pattern * --
|g 2.3.3.
|t Miura-ori * --
|g 2.3.4.
|t Miura-ori Variations * --
|g 2.3.5.
|t Barreto's Mars * --
|g 2.3.6.
|t Generalized Mars * --
|g 2.4.
|t Partial Periodicity *, **, * * * --
|g 2.4.1.
|t Yoshimura-Miura Hybrids * --
|g 2.4.2.
|t Semigeneralized Miura-ori * --
|g 2.4.3.
|t Predistortion * * --
|g 2.4.4.
|t Tachi-Miura Mechanisms * --
|g 2.4.5.
|t Triangulated Cylinders * --
|g 2.4.6.
|t Triangulated Cylinder Geometry * * * --
|g 2.4.7.
|t Waterbomb Tessellation * --
|g 2.4.8.
|t Troublewit and Pleats * --
|g 2.4.9.
|t Corrugations and More * --
|g 2.5.
|t Terms * --
|g 3.1.
|t Twist-Based Tessellations * --
|g 3.2.
|t Folding a Twist * --
|g 3.2.1.
|t Diagrams versus Crease Patterns * --
|g 3.22.
|t Square Twist Tessellation * --
|g 3.3.
|t Elements of a Twist * --
|g 3.4.
|t Regular Polygonal Twists *, ** --
|g 3.4.1.
|t Cyclic Regular Twists * --
|g 3.4.2.
|t Open-and Closed-Back Twists * --
|g 3.4.3.
|t Rotation Angle of the Central Polygon * --
|g 3.4.4.
|t Iso-Area Twists ** --
|g 3.5.
|t Twist Flat-Foldability * --
|g 3.5.1.
|t Local Flat-Foldability * --
|g 3.5.2.
|t Pleat Crease Parity * --
|g 3.5.3.
|t Pleat Assignments * --
|g 3.5.4.
|t mm/vv Condition * --
|g 3.5.5.
|t mv/vm Condition * --
|g 3.5.6.
|t MM/VV Condition * --
|g 3.5.7.
|t MV/VM Condition * --
|g 3.5.8.
|t Cyclic Overlap Conditions * --
|g 3.5.9.
|t Summary of Limits * --
|g 3.6.
|t General Polygonal Twists * *, * * * --
|g 3.6.1.
|t Triangle Twists ** --
|g 3.6.2.
|t Higher-Order Irregular Twists ** --
|g 3.6.3.
|t Cyclic Overlaps in Irregular Twists ** --
|g 3.6.4.
|t Closed-Back Irregular Twists ** --
|g 3.6.5.
|t Open-Back Brocard Polygon Twists * * * --
|g 3.7.
|t Joining Twists * --
|g 3.8.
|t Terms * --
|g 4.1.
|t Introduction to Twist Tiles * --
|g 4.1.1.
|t What is a Tile? * --
|g 4.1.2.
|t Ways of Mating * --
|g 4.1.3.
|t Centered Twist Tiles * --
|g 4.1.4.
|t Offset Twist Tiles * --
|g 4.2.
|t Vertex Figures * --
|g 4.3.
|t Vertices and Angles * * * --
|g 4.3.1.
|t Unit Polygons * * * --
|g 4.3.2.
|t Centered Twist Tiles * * * --
|g 4.3.3.
|t Offset Twist Tiles * * * --
|g 4.4.
|t Folded Form Tiles *, ** --
|g 4.4.1.
|t Centered Twist Folded Form Tiles ** --
|g 4.4.2.
|t Offset Twist Folded Form Tiles * --
|g 4.5.
|t Triangle Tiles ** --
|g 4.5.1.
|t Centered Twist Triangle Tiles ** --
|g 4.5.2.
|t Offset Twist Triangle Tiles ** --
|g 4.6.
|t Higher-Order Polygon Tiles *, **, * * * --
|g 4.6.1.
|t Centered Twist Cyclic Polygon Tiles * --
|g 4.6.2.
|t Cyclic Polygon Construction * * * --
|g 4.6.3.
|t Quadrilateral Offset Twist Polygon Tiles ** --
|g 4.6.4.
|t Offset Twist Higher-Order Polygon Tiles ** --
|g 4.6.5.
|t Pathological Twist Tiles * --
|g 4.6.6.
|t Split-Twist Quadrilateral Tiles * --
|g 4.7.
|t Terms * --
|g 5.1.
|t Introduction to Tilings * --
|g 5.2.
|t Archimedean Tilings *, * * * --
|g 5.2.1.
|t Uniform Tilings * --
|g 5.2.2.
|t Constructing Archimedean Tilings * --
|g 5.2.3.
|t Lattice Patches and Vectors * * * --
|g 5.3.
|t Edge-Oriented Tilings * --
|g 5.3.1.
|t Centered Twist Tiles * --
|g 5.3.2.
|t Offset Twist Tiles * --
|g 5.4.
|t k-Uniform Tilings * --
|g 5.4.1.
|t 2-Uniform Tilings * --
|g 5.4.2.
|t Two-Colorable 2-Uniform Tilings * --
|g 5.4.3.
|t Higher-Order Uniform Tilings * --
|g 5.4.4.
|t Periodic Tilings with Other Shapes * --
|g 5.4.5.
|t Grid Tessellations * --
|g 5.5.
|t Non-Periodic Tilings *, * * * --
|g 5.5.1.
|t Goldberg Tiling * --
|g 5.5.2.
|t Self-Similar Tilings * * * --
|g 5.6.
|t Terms * --
|g 6.1.
|t Shrink and Rotate * --
|g 6.2.
|t Properties ** --
|g 6.2.1.
|t Twist and Aspect Ratio ** --
|g 6.2.2.
|t Crease Pattern/Folded Form Duality ** --
|g 6.3.
|t Nonregular Polygons ** --
|g 6.3.1.
|t Broken Tessellation ** --
|g 6.3.2.
|t Dual Graphs and Interior Duals ** --
|g 6.3.3.
|t Valid Rhombus Tessellation ** --
|g 6.3.4.
|t Relation Between Primal and Dual Graphs ** --
|g 6.4.
|t Maxwell's Reciprocal Figures *, ** --
|g 6.4.1.
|t Indeterminateness and Impossibility * --
|g 6.4.2.
|t Positive and Negative Edge Lengths * --
|g 6.4.3.
|t Crease Assignment ** --
|g 6.4.4.
|t Triangle Graphs ** --
|g 6.4.5.
|t Voronoi and Delaunay ** --
|g 6.5.
|t Flagstone Tessellations * --
|g 6.5.1.
|t Spiderwebs Revisited * --
|g 6.5.2.
|t Flagstone Geometry * --
|g 6.5.3.
|t Flagstone Vertex Construction * --
|g 6.5.4.
|t Examples * --
|g 6.6.
|t Woven Tessellations *, * * * --
|g 6.6.1.
|t Woven Concepts * --
|g 6.6.2.
|t Simple Woven Patterns * --
|g 6.6.3.
|t Woven Algorithm ** * --
|g 6.6.4.
|t Flat Unfoldability * --
|g 6.6.5.
|t Woven Algorithm, Continued * * * --
|g 6.6.6.
|t Woven Examples * --
|g 6.7.
|t Terms * --
|g 7.1.
|t Easy Way or the Hard Way * --
|g 7.2.
|t Half-Open Vertices ** --
|g 7.3.
|t Spherical Geometry ** --
|g 7.4.
|t Degree-4 Vertex in Spherical Geometry ** --
|g 7.4.1.
|t Opposite Fold Angles ** --
|g 7.4.2.
|t Adjacent Fold Angles ** --
|g 7.5.
|t Conditions on Rigid Foldability ** --
|g 7.5.1.
|t Weighted Fold Angle Graph ** --
|g 7.5.2.
|t Distinctness of Fold Angle ** --
|g 7.5.3.
|t Matching Fold Angle ** --
|g 7.6.
|t General Twists ** --
|g 7.6.1.
|t Triangle Twists ** --
|g 7.6.2.
|t Mechanical Advantage ** --
|g 7.7.
|t Non-Twist Folds ** --
|g 7.7.1.
|t General Meshes ** --
|g 7.7.2.
|t Quadrilateral Meshes ** --
|g 7.8.
|t Non-Quadrilateral Meshes * --
|g 7.8.1.
|t Forced Rigid Foldability * --
|g 7.8.2.
|t Non-Flat-Foldable Vertices * --
|g 7.9.
|t Terms * --
|g 8.1.
|t Generalizing Vertices * --
|g 8.2.
|t Gaussian Sphere ** --
|g 8.2.1.
|t Plane Orientation ** --
|g 8.2.2.
|t Trace ** --
|g 8.2.3.
|t Polyhedral Vertices ** --
|g 8.2.4.
|t Degree-4 Vertex ** --
|g 8.3.
|t Sector and Fold Angles ** --
|g 8.3.1.
|t Osculating Plane ** --
|g 8.3.2.
|t Binding Condition ** --
|g 8.3.3.
|t Ruling Plane ** --
|g 8.3.4.
|t Real Space Solid Angle ** --
|g 8.3.5.
|t Ruling Angle ** --
|g 8.3.6.
|t Osculating Angle ** --
|g 8.3.7.
|t Adjacent Fold Angles ** --
|g 8.3.8.
|t Flat-Foldable and Straight-Major/Minor Vertices ** --
|g 8.3.9.
|t Sector Angle/Fold Angle Relations ** --
|g 8.4.
|t More Angles and Planes ** --
|g 8.4.1.
|t Sector Elevation Angles ** --
|g 8.4.2.
|t Sector Angles ** --
|g 8.4.3.
|t Bend Angle ** --
|g 8.4.4.
|t Edge Torsion Angle ** --
|g 8.4.5.
|t Midfold Angles and Planes ** --
|g 8.4.6.
|t Infinitesimal Trace ** --
|g 8.4.7.
|t What Specifies a Vertex? ** --
|g 8.5.
|t Networks of Vertices ** --
|g 8.5.1.
|t Huffman Grid ** --
|g 8.5.2.
|t Gauss Map ** --
|g 8.5.3.
|t Miura-ori and Mars ** --
|g 8.6.
|t Terms * --
|g 9.1.
|t 3D Vectors *** --
|g 9.2.
|t 3D Vertices *** --
|g 9.2.1.
|t Fold Direction Vectors * * * --
|g 9.2.2.
|t Vertex from Fold Directions * * * --
|g 9.2.3.
|t Degree-4 Vertex from Sector Elevation Angles *** --
|g 9.3.
|t Discrete Space Curve * * * --
|g 9.4.
|t Plate Model * * * --
|g 9.4.1.
|t Folding a Crease Pattern * * * --
|g 9.4.2.
|t Fold Angle Consistency * * * --
|g 9.4.3.
|t Solving for Fold Angles ** * --
|g 9.5.
|t Truss Model * ** --
|g 9.5.1.
|t 3D Isometry and Planarity * * * --
|g 9.5.2.
|t Explicit Stress/Strain * * * --
|g 9.5.3.
|t 3D Developability * * * --
|g 9.6.
|t Time Efficiency * --
|g 9.7.
|t Terms * --
|g 10.1.
|t Three-Dimensional Twists *, ** --
|g 10.1.1.
|t Puffy Twists * --
|g 10.1.2.
|t Folding a Sphere ** --
|g 10.2.
|t Thin-Flange Algorithm * * * --
|g 10.3.
|t Thick-Flange Structures *, * * * --
|g 10.3.1.
|t Mosely's "Bud" * --
|g 10.3.2.
|t Thick-Flange Algorithm * * * --
|g 10.3.3.
|t Specified Gores *** --
|g 10.3.4.
|t Generalized Flanges * * * --
|g 10.4.
|t Axial Unfoldings * * * --
|g 10.5.
|t Variations on the Theme * * * --
|g 10.5.1.
|t Twist Lateral Shifts * * * --
|g 10.5.2.
|t Triangulated Gores * * * --
|g 10.6.
|t Artists of Revolution * --
|g 10.7.
|t Terms *.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
0 |
|a Combinatorial designs and configurations.
|
650 |
|
0 |
|a Twist mappings (Mathematics)
|
650 |
|
0 |
|a Tiling (Mathematics)
|
650 |
|
0 |
|a Tessellations (Mathematics)
|
650 |
|
0 |
|a Origami
|x Mathematics.
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|i Print version:
|z 9781482262414
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5205760
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b31456911
|b 240618
|c 180326
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g flu
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 35286376-36de-5c01-a069-7837bf3c7e84
|s 92330d2c-153e-50c4-b823-9590a19c8a13
|t 0
|