Intelligent Autonomy of UAVs : advanced missions and future use /

Saved in:
Bibliographic Details
Main Author: Bestaoui Sebbane, Yasmina (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : Taylor & Francis Group, 2018.
Edition:First edition.
Series:Chapman & Hall/CRC artificial intelligence and robotics ; no. 3
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: ch. 1 Introduction
  • 1.1. Introduction
  • 1.2. Use of Unmanned Aerial Systems
  • 1.2.1. Regulations
  • 1.2.1.1. U.S. regulations
  • 1.2.1.2. European regulations
  • 1.2.1.3. U.K. regulations
  • 1.2.2. Risk analysis
  • 1.2.3. Financial potential
  • 1.2.4. Privacy issue
  • 1.3. Unmanned Aerial System
  • 1.3.1. Ground control station
  • 1.3.2. UAV operator
  • 1.3.2.1. Training environment
  • 1.3.2.2. Assistant systems
  • 1.3.3. UAV simulation
  • 1.3.3.1. Architecture
  • 1.3.3.2. Human---UAV interface considerations
  • 1.4. Case Studies
  • 1.4.1. Industrial applications
  • 1.4.1.1. Infrastructure monitoring
  • 1.4.1.2. Photovoltaic modules monitoring
  • 1.4.2. Civil engineering
  • 1.4.2.1. 3-D building imaging
  • 1.4.2.2. Roof insulation inspection
  • 1.4.2.3. Bridge inspection
  • 1.4.3. Safety and security
  • 1.4.3.1. Traffic monitoring
  • 1.4.3.2. Nuclear, biological, and chemical accident
  • 1.4.3.3. Landmine detection
  • 1.4.4. Environmental applications
  • 1.4.4.1. Geo-referencing
  • 1.4.4.2. Earth observation and mapping
  • 1.4.4.3. Atmospheric monitoring
  • 1.4.4.4. Wildlife evaluation
  • 1.4.5. Precision agriculture
  • 1.4.5.1. Biomass inspection
  • 1.4.5.2. Soil monitoring
  • 1.4.5.3. Forestry
  • 1.4.6. Disaster relief
  • 1.4.6.1. Search and rescue
  • 1.4.6.2. Fires monitoring
  • 1.4.7. Aided communication system
  • 1.5. Conclusion
  • Bibliography
  • ch. 2 Mission Framework
  • 2.1. Introduction
  • 2.2. Autonomy
  • 2.2.1. Levels of autonomy
  • 2.2.2. Decision making
  • 2.2.2.1. Human impact
  • 2.2.2.2. Operational autonomy
  • 2.2.3. Fundamentals
  • 2.2.3.1. Graph theory basics
  • 2.2.3.2. Temporal logic
  • 2.2.3.3. Sensor coverage
  • 2.3. Homogeneous Uav Team
  • 2.3.1. Modeling
  • 2.3.1.1. SISO systems
  • 2.3.1.2. MIMO systems
  • 2.3.2. Planning
  • 2.3.3. Cooperative path following
  • 2.3.3.1. Formation control
  • 2.3.3.2. Cooperative mission
  • 2.3.4. Communication
  • 2.3.4.1. Basics
  • 2.3.4.2. Information architectures
  • 2.3.5. Task assignment
  • 2.3.5.1. Intra-path constraints
  • 2.3.5.2. Urban environments
  • 2.4. Heterogeneous Uavs Team
  • 2.4.1. Consensus algorithm
  • 2.4.2. Task assignment
  • 2.4.2.1. Dynamic resource allocation
  • 2.4.2.2. Auction-based approach
  • 2.4.2.3. Deadlock problem
  • 2.5. Uav--Ugv Teams
  • 2.5.1. Coordination framework
  • 2.5.2. Relative localization approach
  • 2.5.3. Logistics service stations
  • 2.5.3.1. Continuous approximation model
  • 2.5.3.2. Interoperable framework
  • 2.6. Mission Analysis
  • 2.6.1. Methodology
  • 2.6.1.1. Photography with UAV
  • 2.6.1.2. Emergency response with UAV
  • 2.6.2. Mission specificity
  • 2.6.2.1. High---level language
  • 2.6.2.2. Model checking of missions
  • 2.6.3. Human-UAV Team
  • 2.6.3.1. Human--UAV Interaction
  • 2.6.3.2. Operator versus UAV
  • 2.7. Conclusion
  • Bibliography
  • ch. 3 Orienteering and Coverage
  • 3.1. Introduction
  • 3.2. Operational Research Preliminaries
  • 3.2.1. General vehicle routing problem
  • 3.2.2. Traveling salesperson problem
  • 3.2.2.1. Deterministic traveling salesperson
  • 3.2.2.2. Stochastic traveling salesperson
  • 3.2.3. Postperson problem
  • 3.2.3.1. Chinese postperson problem
  • 3.2.3.2. Rural postperson problem
  • 3.2.4. Knapsack problem
  • 3.3. Orienteering
  • 3.3.1. Orienteering problem formulation
  • 3.3.1.1. Nominal orienteering problem
  • 3.3.1.2. Robust orienteering problem
  • 3.3.1.3. UAV team orienteering problem
  • 3.3.2. UAV sensor selection
  • 3.4. Coverage
  • 3.4.1. Barrier coverage
  • 3.4.1.1. Barrier coverage approach
  • 3.4.1.2. Sensor deployment and coverage
  • 3.4.2. Perimeter coverage
  • 3.4.2.1. Coverage of a circle
  • 3.4.2.2. Dynamic boundary coverage
  • 3.4.3. Area coverage
  • 3.4.3.1. Preliminaries
  • 3.4.3.2. Boustrophedon cellular decomposition
  • 3.4.3.3. Spiral path
  • 3.4.3.4. Distributed coverage
  • 3.5. Conclusion
  • Bibliography
  • ch. 4 Deployment, Patrolling, and Foraging
  • 4.1. Introduction
  • 4.2. Aerial Deployment
  • 4.2.1. Deployment problem
  • 4.2.1.1. Deployment methodology
  • 4.2.1.2. Deployment strategies
  • 4.2.2. Mobile sensor network
  • 4.2.2.1. Aerial networks
  • 4.2.2.2. Visual coverage
  • 4.2.2.3. Wireless sensor network
  • 4.3. Patrolling
  • 4.3.1. Perimeter patrol
  • 4.3.2. Area cooperative patrolling
  • 4.3.2.1. Multiple depot multi-TSP
  • 4.3.2.2. Exploration
  • 4.4. Foraging
  • 4.4.1. Problem formulation
  • 4.4.1.1. Abstract model
  • 4.4.1.2. Continuous foraging
  • 4.4.1.3. Foraging algorithms
  • 4.4.1.4. Anchoring
  • 4.4.2. Aerial manipulation
  • 4.4.2.1. Aerial transportation
  • 4.4.2.2. Coupled dynamics
  • 4.5. Conclusion
  • Bibliography
  • ch. 5 Search, Tracking, and Surveillance
  • 5.1. Introduction
  • 5.2. Basics of Search Theory and Decision Support
  • 5.2.1. Types of search problems
  • 5.2.2. Camera properties
  • 5.2.3. Human operator
  • 5.3. Information Gathering
  • 5.3.1. Detection
  • 5.3.1.1. Agent model of a missing person
  • 5.3.1.2. Proximity relationship
  • 5.4. Mobility of Targets
  • 5.4.1. Stationary target
  • 5.4.2. Moving target
  • 5.4.2.1. Target capturability
  • 5.4.2.2. Trajectory optimization
  • 5.4.2.3. Tracking a ground moving target
  • 5.4.2.4. Moving source seeking
  • 5.5. Target Search and Tracking
  • 5.5.1. Cooperative monitoring
  • 5.5.1.1. Optimal distributed searching in the plane
  • 5.5.1.2. Distributed estimation and control
  • 5.5.1.3. Temporal planning approach
  • 5.5.2. Communications
  • 5.5.2.1. Asynchronous communication protocol
  • 5.5.2.2. Mobile ad-hoc network
  • 5.6. Surveillance
  • 5.6.1. Stochastic strategies for surveillance
  • 5.6.1.1. Analysis methods
  • 5.6.1.2. Single UAV investigations
  • 5.6.1.3. Multi--UAV investigations
  • 5.6.2. Urban surveillance
  • 5.6.3. Monitoring wildfire frontiers
  • 5.6.3.1. Surveillance of risk sensitive areas
  • 5.6.3.2. Cooperative surveillance
  • 5.6.3.3. Cooperative relay tracking
  • 5.6.3.4. Path planning with temporal logic constraints
  • 5.6.4. Probabilistic weather forecasting
  • 5.7. Conclusion
  • Bibliography
  • ch. 6 General Conclusions
  • ch. 7 Acronyms.