|
|
|
|
LEADER |
00000nam a22000001i 4500 |
001 |
b3164732 |
003 |
CStclU |
005 |
20180525061127.6 |
006 |
m |o d | |
007 |
cr |n||||||||| |
008 |
180525s2018 flua ob 001 0 eng d |
020 |
|
|
|a 9781351807333 (electronic bk.)
|
020 |
|
|
|a 1351807331 (electronic bk.)
|
020 |
|
|
|z 9781138585997
|
020 |
|
|
|z 1138585998
|
020 |
|
|
|z 9781138630154
|
020 |
|
|
|z 1138630152
|
035 |
|
|
|a (NhCcYBP)ebc5352298
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a QA402
|b .C7265 2018
|
082 |
0 |
4 |
|a 003
|2 23
|
100 |
1 |
|
|a Crane, Harry
|c (Statistics professor),
|e author.
|
245 |
1 |
0 |
|a Probabilistic foundations of statistical network analysis /
|c Harry Crane.
|
264 |
|
1 |
|a Boca Raton, FL :
|b CRC Press, Taylor & Francis Group,
|c [2018]
|
300 |
|
|
|a 1 online resource (xx, 236 pages.)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Monographs on statistics and applied probability ;
|v 157
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Orientation --
|g 1.1.
|t Analogy: Bernoulli trials --
|g 1.2.
|t What it is: Graphs vs. Networks --
|g 1.3.
|t How to look at it: Labeling and representation --
|g 1.4.
|t Where it comes from: Context --
|g 1.5.
|t Making sense of it all: Coherence --
|g 1.6.
|t What we're talking about: Examples of network data --
|g 1.6.1.
|t Internet --
|g 1.6.2.
|t Social networks --
|g 1.6.3.
|t Karate club --
|g 1.6.4.
|t Enron email corpus --
|g 1.6.5.
|t Collaboration networks --
|g 1.6.6.
|t Blockchain and cryptocurrency networks --
|g 1.6.7.
|t Other networks --
|g 1.6.8.
|t Some common scenarios --
|g 1.7.
|t Major open questions --
|g 1.7.1.
|t Sparsity --
|g 1.7.2.
|t Modeling network complexity --
|g 1.7.3.
|t Sampling issues --
|g 1.7.4.
|t Modeling network dynamics --
|g 1.8.
|t Toward a Probabilistic Foundation for Statistical Network Analysis --
|g 2.
|t Binary relational data --
|g 2.1.
|t Scenario: Patterns in international trade --
|g 2.1.1.
|t Summarizing network structure --
|g 2.2.
|t Dyad independence model --
|g 2.3.
|t Exponential random graph models (ERGMs) --
|g 2.4.
|t Scenario: Friendships in a high school --
|g 2.5.
|t Network inference under sampling --
|g 2.6.
|t Further reading --
|g 3.
|t Network sampling --
|g 3.1.
|t Opening Example --
|g 3.2.
|t Consistency under selection --
|g 3.2.1.
|t Consistency of the p1 model --
|g 3.3.
|t Significance of sampling consistency --
|g 3.3.1.
|t Toward a coherent framework for network modeling --
|g 3.4.
|t Selection from sparse networks --
|g 3.5.
|t Scenario: Ego networks in high school friendships --
|g 3.6.
|t Network sampling schemes --
|g 3.6.1.
|t Relational sampling --
|g 3.6.1.1.
|t Edge sampling --
|g 3.6.1.2.
|t Hyperedge sampling --
|g 3.6.1.3.
|t Path sampling --
|g 3.6.2.
|t Snowball sampling --
|g 3.7.
|t Units of observation --
|g 3.8.
|t What is the sample size? --
|g 3.9.
|t Consistency under subsampling --
|g 3.10.
|t Further reading --
|g 3.11.
|t Solutions to exercises --
|g 3.11.1.
|t Exercise 3.1 --
|g 3.11.2.
|t Exercise 3.2 --
|g 3.11.3.
|t Exercise 3.3 --
|g 3.11.4.
|t Exercise 3.4 --
|g 4.
|t Generative models --
|g 4.1.
|t Specification of generative models --
|g 4.2.
|t Generative model 1: Preferential attachment model --
|g 4.3.
|t Generative model 2: Random walk models --
|g 4.4.
|t Generative model 3: Erdos--Renyi--Gilbert model --
|g 4.5.
|t Generative model 4: General sequential construction --
|g 4.6.
|t Further reading --
|g 5.
|t Statistical modeling paradigm --
|g 5.1.
|t quest for coherence --
|g 5.2.
|t incoherent model --
|g 5.3.
|t What is a statistical model? --
|g 5.3.1.
|t Population model --
|g 5.3.2.
|t Finite sample models --
|g 5.4.
|t Coherence --
|g 5.4.1.
|t Coherence in sampling models --
|g 5.4.2.
|t Coherence in generative models --
|g 5.5.
|t Statistical implications of coherence --
|g 5.6.
|t Examples --
|g 5.6.1.
|t Example 1: Erdos--Renyi--Gilbert model under selection sampling --
|g 5.6.2.
|t Example 2: ERGM under selection sampling --
|g 5.6.3.
|t Example 3: Erdos--Renyi--Gilbert model under edge sampling --
|g 5.7.
|t Invariance principles --
|g 5.8.
|t Further reading --
|g 5.9.
|t Solutions to exercises --
|g 5.9.1.
|t Exercise 5.1 --
|g 6.
|t Vertex exchangeable models --
|g 6.1.
|t Preliminaries: Formal definition of exchangeability --
|g 6.2.
|t Implications of exchangeability --
|g 6.3.
|t Finite exchangeable random graphs --
|g 6.3.1.
|t Exchangeable ERGMs --
|g 6.4.
|t Countable exchangeable models --
|g 6.4.1.
|t Graphon models --
|g 6.4.1.1.
|t Generative model --
|g 6.4.2.
|t Aldous--Hoover theorem --
|g 6.4.3.
|t Graphons and vertex exchangeability --
|g 6.4.4.
|t Subsampling description --
|g 6.5.
|t Viability of graphon models --
|g 6.5.1.
|t Implication 1: Dense structure --
|g 6.5.2.
|t Implication 2: Representative sampling --
|g 6.5.3.
|t emergence of graphons --
|g 6.6.
|t Potential benefits of graphon models --
|g 6.6.1.
|t Connection to de Finetti's theorem --
|g 6.6.2.
|t Graphon estimation --
|g 6.7.
|t Further reading --
|g 6.8.
|t Solutions to exercises --
|g 6.8.1.
|t Exercise 6.1 --
|g 6.8.2.
|t Exercise 6.2 --
|g 6.8.3.
|t Exercise 6.3 --
|g 6.8.4.
|t Exercise 6.4 --
|g 6.8.5.
|t Exercise 6.5 --
|g 6.8.6.
|t Exercise 6.6 --
|g 6.8.7.
|t Exercise 6.7 --
|g 6.8.8.
|t Exercise 6.8 --
|g 7.
|t Getting beyond graphons --
|g 7.1.
|t Something must go --
|g 7.2.
|t Sparse graphon models --
|g 7.3.
|t Completely random measures and graphex models --
|g 7.3.1.
|t Scenario: Formation of Facebook friendships --
|g 7.3.2.
|t Network representation --
|g 7.3.3.
|t Interpretation of vertex labels --
|g 7.3.4.
|t Exchangeable point process models --
|g 7.3.5.
|t Oxymoron: `Sparse exchangeable graphs' --
|g 7.3.6.
|t Graphex representation --
|g 7.3.7.
|t Sampling context --
|g 7.3.8.
|t Further discussion --
|g 7.4.
|t Variants of invariance --
|g 7.4.1.
|t Relatively exchangeable models (Chapter 8) --
|g 7.4.2.
|t Edge exchangeable models (Chapter 9) --
|g 7.4.3.
|t Relationally exchangeable models (Chapter 10) --
|g 7.5.
|t Solutions to exercises --
|g 7.5.1.
|t Exercise 7.1 --
|g 7.5.2.
|t Exercise 7.2 --
|g 7.5.3.
|t Exercise 7.3 --
|g 7.5.4.
|t Exercise 7.4 --
|g 8.
|t Relatively exchangeable models --
|g 8.1.
|t Scenario: Heterogeneity in social networks --
|g 8.2.
|t Stochastic blockmodels --
|g 8.2.1.
|t Generalized blockmodels --
|g 8.2.2.
|t Community detection and Bayesian versions of SBM --
|g 8.2.3.
|t Beyond SBMs and community detection --
|g 8.3.
|t Exchangeability relative to another network --
|g 8.3.1.
|t Scenario: High school social network revisited --
|g 8.3.2.
|t Exchangeability relative to a social network --
|g 8.3.3.
|t Lack of interference --
|g 8.3.4.
|t Label equivariance --
|g 8.4.
|t Latent space models --
|g 8.5.
|t Relatively exchangeable random graphs --
|g 8.5.1.
|t Relatively exchangeable φ-processes --
|g 8.6.
|t Relative exchangeability under arbitrary sampling --
|g 8.7.
|t Relatively invariant graphex models --
|g 8.8.
|t Final remarks and further reading --
|g 8.9.
|t Solutions to exercises --
|g 8.9.1.
|t Exercise 8.1 --
|g 8.9.2.
|t Exercise 8.2 --
|g 8.9.3.
|t Exercise 8.3 --
|g 8.9.4.
|t Exercise 8.4 --
|g 9.
|t Edge exchangeable models --
|g 9.1.
|t Scenario: Monitoring phone calls --
|g 9.2.
|t Edge-centric view --
|g 9.3.
|t Edge exchangeability --
|g 9.4.
|t Interaction propensity processes --
|g 9.5.
|t Characterizing edge exchangeable random graphs --
|g 9.6.
|t Vertex components models --
|g 19.6.1.
|t Stick-breaking constructions for vertex components --
|g 9.7.
|t Holly wood model --
|g 9.7.1.
|t Hollywood process --
|g 9.7.2.
|t Role of parameters in the Holly wood model --
|g 9.7.3.
|t Statistical properties of the Hollywood model --
|g 9.7.4.
|t Prediction from the Hollywood model --
|g 9.8.
|t Contexts for edge sampling --
|g 9.9.
|t Relative edge exchangeability --
|g 9.10.
|t Thresholding --
|g 9.11.
|t Comparison: Edge exchangeability v. graphex --
|g 9.12.
|t Further reading --
|g 9.13.
|t Solutions to exercises --
|g 9.13.1.
|t Exercise 9.1 --
|g 9.13.2.
|t Exercise 9.2 --
|g 9.13.3.
|t Exercise 9.3 --
|g 9.13.4.
|t Exercise 9.4 --
|g 9.13.5.
|t Exercise 9.5 --
|g 9.13.6.
|t Exercise 9.6 --
|g 9.13.7.
|t Exercise 9.7 --
|g 9.13.8.
|t Exercise 9.8 --
|g 10.
|t Relationally exchangeable models --
|g 10.1.
|t Sampling multiway interactions (hyperedges) --
|g 10.1.1.
|t Collaboration networks --
|g 10.1.2.
|t Coauthorship networks --
|g 10.2.
|t Representing multiway interaction networks --
|g 10.3.
|t Hyperedge exchangeability --
|g 10.3.1.
|t Interaction propensity process --
|g 10.3.2.
|t Characterization of hyperedge exchangeable network models --
|g 10.4.
|t Scenario: Traceroute sampling of Internet topology --
|g 10.4.1.
|t Representing the data --
|g 10.4.2.
|t Path exchangeability --
|g 10.4.3.
|t Relational exchangeability --
|g 10.5.
|t General Hollywood model --
|g 10.6.
|t Markovian vertex components models --
|g 10.7.
|t Contexts for relational sampling --
|g 10.8.
|t Concluding remarks and further reading --
|g 11.
|t Dynamic network models --
|g 11.1.
|t Scenario: Dynamics in social media activity --
|g 11.2.
|t Modeling considerations --
|g 11.2.1.
|t Network dynamics: Markov property --
|g 11.2.1.1.
|t Modeling the initial state --
|g 11.2.1.2.
|t Is the Markov property a good assumption? --
|g 11.2.1.3.
|t Temporal Exponential Random Graph Model (TERGM) --
|g 11.2.2.
|t Projectivity and sampling --
|g 11.2.2.1.
|t Example: A TERGM for triangle counts --
|g 11.2.2.2.
|t Projective Markov property --
|g 11.3.
|t Rewiring chains and Markovian graphons --
|g 11.3.1.
|t Exchangeable rewiring processes (Markovian graphons) --
|g 11.4.
|t Graph-valued Levy processes --
|g 11.4.1.
|t Inference from graph-valued Levy processes --
|g 11.5.
|t Continuous time processes --
|g 11.5.1.
|t Poissonian construction --
|g 11.6.
|t Further reading --
|g 11.7.
|t Solutions to exercises --
|g 11.7.1.
|t Exercise 11.1.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
0 |
|a System analysis
|x Mathematical models.
|
650 |
|
0 |
|a Network analysis (Planning)
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|c Original
|z 9781138585997
|z 1138585998
|z 9781138630154
|z 1138630152
|w (DLC) 2018006902
|
830 |
|
0 |
|a Monographs on statistics and applied probability (Series) ;
|v 157.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5352298
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b31647327
|b 200401
|c 180529
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g flu
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 3e2fc898-a78f-5593-89b2-4e8fec0e725c
|s f9f7a3c9-db4e-5c8b-a9a7-8cd5f860e00e
|t 0
|