Resource efficiency of processing plants : monitoring and improvement /

Saved in:
Bibliographic Details
Corporate Author: ProQuest (Firm)
Other Authors: Krämer, Stefan (Editor), Engell, S. (Sebastian) (Editor)
Format: Electronic eBook
Language:English
Published: Weinheim, Germany : Wiley-VCH, [2018]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1. Energy and Resource Efficiency in the Process Industries
  • 1.1. Introduction / Sebastian Engell / Stefan Kramer
  • 1.2. Energy and Resources / Sebastian Engell / Stefan Kramer
  • 1.2.1. What Do We Mean by Energy and Resources? / Sebastian Engell / Stefan Kramer
  • 1.2.2. Classification of Energy and Resources / Sebastian Engell / Stefan Kramer
  • 1.3. Energy and Resource Efficiency / Sebastian Engell / Stefan Kramer
  • 1.4. Evaluation of Energy and Resource Efficiency / Sebastian Engell / Stefan Kramer
  • 1.5. Evaluation of Energy and Resource Efficiency in Real Time / Sebastian Engell / Stefan Kramer
  • 1.6. Chemical and Process Industry / Sebastian Engell / Stefan Kramer
  • 1.6.1. Introduction / Sebastian Engell / Stefan Kramer
  • 1.6.2. Structure of the EU Chemical Industry / Sebastian Engell / Stefan Kramer
  • 1.6.3. Energy and Raw Material Use of the Chemical Industry / Sebastian Engell / Stefan Kramer
  • 1.7. Recent and Potential Improvements in Energy and Resource Consumption of the Chemical and Process Industries / Sebastian Engell / Stefan Kramer
  • 1.8. What Can Be Done to Further Improve the Resource Efficiency of the Process Industry? / Sebastian Engell / Stefan Kramer
  • 1.8.1. Make a Plan, Set Targets and Validate the Achievements / Sebastian Engell / Stefan Kramer
  • 1.8.2. Measure and Improve Operations / Sebastian Engell / Stefan Kramer
  • 1.8.3. Improve the Process / Sebastian Engell / Stefan Kramer
  • 1.8.4. Integrate with Other Industrial Sectors and with the Regional Municipal Environment / Sebastian Engell / Stefan Kramer
  • 1.8.5. Don't Forget the People / Sebastian Engell / Stefan Kramer
  • 1.9. Conclusions / Sebastian Engell / Stefan Kramer
  • References / Sebastian Engell / Stefan Kramer
  • 2. Standards, Regulations and Requirements Concerning Energy and Resource Efficiency / Sebastian Engell / Stefan Kramer
  • 2.1. Introducing a Long-Term Development / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.1.1. Historical Background and Reasoning / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.1.2. Relation of CO2 Emissions and Energy Efficiency / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.1.3. EU Goals for Energy Efficiency / Nico Behrendt / Sean Oppermann / David Kroll / Jochen Buser / Jan U. Lieback
  • 2.1.4. Energy Efficiency Worldwide / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.1.5. Growing EU Concern on Resource Efficiency / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2. Normative Approaches on Energy and Resource Efficiency / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.1. Management Systems, Aim and Construction / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.2. From Precursors towards the ISO 50001 / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.3. Basics of ISO 50001 and Dissemination / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.4. Energy Efficiency Developments in Germany / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.5. ISO 50001 and ISO 50004 / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.5.1. ISO 50001 / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.5.2. ISO 50004 / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.6. ISO 50003 and Companions ISO 50006 and 50015 / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.7. EN 16247 and ISO 50002 / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.8. New Standards / David Kroll / Nico Behrendt / Jochen Buser / Jan U. Lieback / Sean Oppermann
  • 2.2.9. Normative Approaches Regarding Resource Efficiency / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.2.10. Perspectives / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.3. Achievements of Energy and Resource Management / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.3.1. Energy Baseline (EnB) and Energy Performance Indicators (EnPIs), Controlling Efficiency Improvement / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.3.2. Developing EnPIs, Measuring and Verification of Energy Performance / Jan U. Lieback / Jochen Buser / David Kroll / Nico Behrendt / Sean Oppermann
  • 2.3.3. Hierarchy of Measures / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.3.4. Energy and Resource Efficiency in the Context of Energy Management / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.3.5. Examples of Measures / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 2.4. Conclusion / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • References / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 3. Energy and Resource Efficiency Reporting / Jan U. Lieback / Jochen Buser / Sean Oppermann / Nico Behrendt / David Kroll
  • 3.1. Executive Summary / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.2. Introduction / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.3. Obligatory Reporting Mechanisms / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.3.1. EU Directive on Industrial Emissions (IED) / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.3.2. EU Directive on Non-Financial Reporting / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4. Voluntary Reporting Mechanisms / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.1. Eco-Management and Audit Scheme (EMAS) / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.2. OECD Guidelines for Multinational Enterprises / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.3. UN Global Compact / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.4. Global Reporting Initiative (GRI) / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.5. Integrated Reporting and the <IR> Framework / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.6. GHG protocol / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.7. ISO 14000 Series / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.8. Environmental Labels / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.4.9. Environmental Product Footprint and Organisational Footprint (PEF, OEF) / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.5. Other Reporting Mechanisms / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.5.1. Key Performance Indicators / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 3.6. Summary of the Energy and Resource Efficiency Reporting Requirements / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • References / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 4. Energy Efficiency Audits / Marjukka Kujanpaa / Helena Wessman-Jaaskelainen / Tiina Pajula
  • 4.1. Introduction / Gunther Windecker
  • 4.2. Stage 1: Current Energy Status / Gunther Windecker
  • 4.3. Stage 2: Basic Analysis / Gunther Windecker
  • 4.4. Stage 3: Detailed Analysis and Collection of Ideas / Gunther Windecker
  • 4.5. Stage 4: Evaluation and Selection of Measures / Gunther Windecker
  • 4.6. Stage 5: Realization and Monitoring / Gunther Windecker
  • 4.7. Extension to Resource Efficiency / Gunther Windecker
  • 4.8. Closing Remark / Gunther Windecker
  • References / Gunther Windecker
  • 5. Real-Time Performance Indicators for Energy and Resource Efficiency in Continuous and Batch Processing / Gunther Windecker
  • 5.1. Introduction / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2. Real-Time Resource Efficiency Indicators / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.1. Resource Efficiency / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.2. REI as (Key) Performance Indicators ((K)PI) / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.3. Real-Time Resource Efficiency Monitoring / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4. Principles That Guide the Definition of Real-Time REI (Adapted from Ref. [10]) / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.1. Gate-to-Gate Approach / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.2. Based on Material and Energy Flow Analysis / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • Contents note continued: 5.2.4.3. Resource and Output Specific to a Potential for Meaningful Aggregation / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.4. Normalize to the Best Possible Operation / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.5. Consider (Long-Term) Storage Effects / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.6. Include Environmental Impact / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.7. Hierarchy of Indicators - From the Whole Site to a Single Apparatus / Stefan Kramer / Benedikt Beisheim / Sebastian Engell / Daniel Ackerschott / Marc Kalliski
  • 5.2.4.8. Focus on Technical Performance Independent of Economic Factors / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.4.9. Extensible to Life-Cycle Analysis (LCA) / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.5. Extension to LCA and Reporting / Benedikt Beisheim / Marc Kalliski / Stefan Kramer / Sebastian Engell / Daniel Ackerschott
  • 5.2.6. Real-Time Resource Efficiency Indicators: Generic Indicators / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.2.7. Definition of Baselines: Average and Best Cases / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.3. Evaluation of the Suitability of Resource Efficiency Indicators / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.3.1. Basic Procedure / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.3.2. MORE RACER Evaluation Framework / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.3.3. Application of the RACER Framework / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4. Hierarchical Modelling of Continuous Production Complexes / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.1. Introduction to the Plant Hierarchy / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2. Aggregation and Contribution Calculation / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2.1. General Performance Deviation / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2.2. Aggregation / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2.3. Performance Contribution of Lower Levels / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2.4. Load Contribution of Lower Levels / Stefan Kramer / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell
  • 5.4.2.5. Contribution of Other Factors / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2.6. Overall Result / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.2.7. Illustrative Example / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.3. Integration of Utility and Energy Provider / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.4. Product-Oriented REI / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.4.5. Simulated Example / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5. Batch Production / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.1. Batch Resource Efficiency Indicators / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.1.1. Energy Efficiency / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.1.2. Material Efficiency / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.1.3. Water and Waste Efficiency / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.2. REI for Key Production Phases / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.2.1. Reaction Efficiency / Sebastian Engell / Stefan Kramer / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott
  • 5.5.2.2. Purification Efficiency / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.3. REI for Plant-Wide Contributions to Resource Efficiency / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.4. Rules for the Propagation and Aggregation of REI / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.4.1. Recycled Materials / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.5.5. Uniting and Splitting of Batches / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.6. Integrated Batch and Continuous Production / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.6.1. Transition from Batch to Continuous Production / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.6.2. Transition from Continuous to Batch Production / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 5.7. Conclusions / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • Appendix: Decomposition of ABDPL / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • References / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 6. Sensing Technology / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 6.1. Introduction / Alejandro Rosales / Oonagh McNerney
  • 6.2. Sensing: General Considerations and Challenges / Alejandro Rosales / Oonagh McNerney
  • 6.2.1. Precision / Alejandro Rosales / Oonagh McNerney
  • 6.2.2. Accuracy / Alejandro Rosales / Oonagh McNerney
  • 6.2.3. Limitations of Any Measurement Method Due to the Inadequacy of the Theoretical Model for Matching the Real-World Conditions / Alejandro Rosales / Oonagh McNerney
  • 6.2.4. Sampling: The Nature of the Interaction Between the Bodies to be Measured and the Measurement Instrument is a Key Consideration for Inline Monitoring / Alejandro Rosales / Oonagh McNerney
  • 6.3. Energy Saving by Means of Accurate Metering / Alejandro Rosales / Oonagh McNerney
  • 6.4. Latest Advancements in Spectroscopy Technology for Process-Monitoring-Based Efficiency / Alejandro Rosales / Oonagh McNerney
  • 6.4.1. Introduction and State of the Art / Alejandro Rosales / Oonagh McNerney
  • 6.4.2. Hyperspectral Imaging / Alejandro Rosales / Oonagh McNerney
  • 6.4.3. Time-Gated Raman / Alejandro Rosales / Oonagh McNerney
  • 6.5. Process Analytical Technologies (PAT) / Alejandro Rosales / Oonagh McNerney
  • 6.6. Soft Sensors. Access to the "Truth" Distributed Among a Plurality of Simple Sensors / Alejandro Rosales / Oonagh McNerney
  • 6.7. MEMS-Based Sensors. Smart Sensors / Alejandro Rosales / Oonagh McNerney
  • 6.8. Future Trends in Sensing with Promising Impact on Reliable Process Monitoring / Alejandro Rosales / Oonagh McNerney
  • 6.8.1. Quantum Cascade Lasers (QCLs) / Alejandro Rosales / Oonagh McNerney
  • 6.8.2. Graphene-Based Sensors / Alejandro Rosales / Oonagh McNerney
  • 6.9. European R&D: Driving Forward Sensing Advancements / Alejandro Rosales / Oonagh McNerney
  • 6.10. Conclusion / Alejandro Rosales / Oonagh McNerney
  • References / Alejandro Rosales / Oonagh McNerney
  • 7. Information Technology and Structuring of Information for Resource Efficiency Analysis and Real-Time Reporting / Alejandro Rosales / Oonagh McNerney
  • 7.1. Introduction / Udo Enste
  • 7.2. Information Technology in the Process Industries / Udo Enste
  • 7.3. Resource Flow Modelling and Structuring of Information / Udo Enste
  • 7.3.1. Resource Managed Units / Udo Enste
  • 7.3.2. 3-Tier Information Modelling Approach / Udo Enste
  • 7.4. From Formulae to Runtime Software / Udo Enste
  • 7.4.1. Recommended System Architecture - Building Context Awareness / Udo Enste
  • 7.4.2. REI Application Design Process / Udo Enste
  • 7.5. Industrial Installations / Udo Enste
  • 7.5.1. Example 1: Batch-Continuous-Process / Udo Enste
  • 7.5.2. Example 2: Integrated Chemical Production Complex / Udo Enste
  • 7.6. Summary and Conclusions / Udo Enste
  • References / Udo Enste
  • 8. Data Pre-treatment / Udo Enste
  • 8.1. Measurement Errors and Variable Estimation / Cesar de Prada / Daniel Sarabia
  • 8.2. Data Reconciliation / Cesar de Prada / Daniel Sarabia
  • 8.3. Gross Errors Detection and Removal / Cesar de Prada / Daniel Sarabia
  • 8.3.1. Statistical Methods for Gross Errors Detection / Cesar de Prada / Daniel Sarabia
  • Contents note continued: 8.3.2. Robust M-Estimators / Cesar de Prada / Daniel Sarabia
  • 8.4. Data Pre-treatment and Steady-State Detection / Cesar de Prada / Daniel Sarabia
  • 8.5. Dynamic Data Reconciliation / Cesar de Prada / Daniel Sarabia
  • 8.6. Conclusions / Cesar de Prada / Daniel Sarabia
  • References / Cesar de Prada / Daniel Sarabia
  • 9. REI-Based Decision Support / Cesar de Prada / Daniel Sarabia
  • 9.1. Introduction / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2. Visualization / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.1. Principles of Human-Machine Interface Engineering / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2. REI Visualization Concepts / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2.1. Indicators Included in Plant Structure / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2.2. Sankey Diagrams / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2.3. Bullet Chart / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2.4. Stacked Bars and Stacked Area Plots / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2.5. Difference Charts and Sparklines / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.2.2.6. Aggregated Tiles / Daniel Ackerschott / Stefan Kramer / Benedikt Beisheim / Marc Kalliski / Sebastian Engell
  • 9.2.2.7. Selection of Visualization Elements for Efficient Concepts / Benedikt Beisheim / Marc Kalliski / Daniel Ackerschott / Sebastian Engell / Stefan Kramer
  • 9.2.3. Process Monitoring / Marc Kalliski / Benedikt Beisheim / Stefan Kramer / Daniel Ackerschott / Sebastian Engell
  • 9.2.3.1. Dashboard Concept for the Sugar Plant Case Study / Stefan Kramer / Daniel Ackerschott / Benedikt Beisheim / Marc Kalliski / Sebastian Engell
  • 9.3. What-If Analysis / Stefan Kramer / Daniel Ackerschott / Benedikt Beisheim / Marc Kalliski / Sebastian Engell
  • 9.3.1. Introduction / Stefan Kramer / Daniel Ackerschott / Benedikt Beisheim / Marc Kalliski / Sebastian Engell
  • 9.3.2. Requirements / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.3.2.1. Graphical Guidance / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.3.2.2. Flexibility / Marc Kalliski / Benedikt Beisheim / Daniel Ackerschott / Stefan Kramer / Sebastian Engell
  • 9.3.2.3. Analysis of Results / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.3.2.4. Visual Feedback / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.3.2.5. Scenario Database / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.3.3. Exemplary Application / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4. Optimization / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4.1. Introduction / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4.2. Requirements / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4.2.1. Real-Time Performance / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4.2.2. Analysis of Optima / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4.2.3. Multicriterial Optimization / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.4.3. Exemplary Application / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 9.5. Conclusions / Sebastian Engell / Marc Kalliski / Stefan Kramer / Daniel Ackerschott / Benedikt Beisheim
  • References / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 10. Advanced Process Control for Maximum Resource Efficiency / Marc Kalliski / Benedikt Beisheim / Sebastian Engell / Stefan Kramer / Daniel Ackerschott
  • 10.1. Introduction / Andre Kilian
  • 10.2. Importance of Constraint Control / Andre Kilian
  • 10.2.1. Operating Strategy for a Simple Depropanizer Column: Motivating Example / Andre Kilian
  • 10.2.2. Graphical Representation of Constraints / Andre Kilian
  • 10.2.3. Additive Nature of Constraint Give-Away / Andre Kilian
  • 10.2.4. Need for Closed-Loop Optimization / Andre Kilian
  • 10.3. What is Advanced Process Control? / Andre Kilian
  • 10.3.1. Control Pyramid / Andre Kilian
  • 10.3.2. Common Features of MPC Technologies / Andre Kilian
  • 10.4. Benefits and Requirements for Success / Andre Kilian
  • 10.4.1. Achieving Financial Benefits / Andre Kilian
  • 10.4.2. Justification and Benefit Estimation / Andre Kilian
  • 10.5. Requirements for success / Andre Kilian
  • 10.6. Conclusion / Andre Kilian
  • References / Andre Kilian
  • 11. Real-Time Optimization (RTO) Systems / Andre Kilian
  • 11.1. Introduction / Jose L. Pitarch / Cesar de Prada
  • 11.2. RTO Systems / Jose L. Pitarch / Cesar de Prada
  • 11.3. Optimization Methods and Tools / Jose L. Pitarch / Cesar de Prada
  • 11.3.1. Non-Linear Programming / Jose L. Pitarch / Cesar de Prada
  • 11.3.1.1. KKT Optimality Conditions / Jose L. Pitarch / Cesar de Prada
  • 11.3.1.2. Sequential Quadratic Programming (SQP) / Jose L. Pitarch / Cesar de Prada
  • 11.3.1.3. Interior Point (IP) Methods / Jose L. Pitarch / Cesar de Prada
  • 11.3.2. Software and Practice / Jose L. Pitarch / Cesar de Prada
  • 11.3.3. Dynamic Optimization / Jose L. Pitarch / Cesar de Prada
  • 11.4. Application Example: RTO in a Multiple-Effect Evaporation Process / Jose L. Pitarch / Cesar de Prada
  • 11.4.1. Steady-State Modelling / Jose L. Pitarch / Cesar de Prada
  • 11.4.2. Experimental Customization / Jose L. Pitarch / Cesar de Prada
  • 11.4.2.1. Data Reconciliation / Jose L. Pitarch / Cesar de Prada
  • 11.4.2.2. Proposed Procedure / Jose L. Pitarch / Cesar de Prada
  • 11.4.3. Optimal Operation / Jose L. Pitarch / Cesar de Prada
  • 11.4.4. Some Experimental Results / Jose L. Pitarch / Cesar de Prada
  • 11.5. Conclusions / Jose L. Pitarch / Cesar de Prada
  • References / Jose L. Pitarch / Cesar de Prada
  • 12. Demand Side Response (DSR) for Improving Resource Efficiency beyond Single Plants / Cesar de Prada / Jose L. Pitarch
  • 12.1. Executive Summary / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.2. Introduction / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.2.1. Trends / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.2.2. Demand Side Response to Stabilize the Electricity Grid / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.2.3. History of Demand Side Response / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.3. Structure of this Chapter / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4. Motivation / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.1. Demand for Flexibility and Alternatives to Demand Side Response / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.1.1. Increase Flexibility via Additional Energy Storage Capacity / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.1.2. Increase Flexibility via Additional Conventional Power Plants / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.1.3. Increase Flexibility through Active Control of Renewable Energy Sources / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.1.4. Increase Flexibility through an Increased Grid Capacity / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.1.5. Increase Flexibility through Alternative Market Options / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.2. Types of Demand Side Response Measures / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.4.3. Market Drivers and Market Barriers / Iiro Harjunkoski / Lennart Merkert / Jan Schlake
  • 12.5. Demand Side Response at Large Consumers / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.1. Energy Efficiency (EE) / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.1.1. Example: Use of More Energy-Efficient Pumps / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.2. Load Management - Energy Demand Changes by Enhanced Planning Capability / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.3. DSR Triggers / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.3.1. Utility Trigger and Price Changes / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.3.2. Energy Shortage / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.3.3. Energy Portfolio Optimization / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.4. Types of Demand Side Response / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.4.1. Peak Shaving / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.4.2. Load Shedding / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.5.4.3. Load Shifting / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • Contents note continued: 12.5.4.4. Ancillary Services / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.6. Valorization / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.6.1. Industrial Examples of Demand Side Response / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.6.2. Example: Steel Production / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 12.7. Summary and Outlook / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • References / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 13. Energy Efficiency Improvement using STRUCTese[&#x2122;] / Iiro Harjunkoski / Jan Schlake / Lennart Merkert
  • 13.1. Introduction / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 13.1.1. STRUCTese[&#x2122;] Management System / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 13.1.2. Energy Efficiency Check and Improvement Plan / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 13.1.3. Energy Loss Cascade and Performance Indicators / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 13.1.4. Online Monitoring and Daily Energy Protocol / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 13.1.5. Implementation Results / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 13.1.6. Open Issues and Research Topics / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • References / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 14. Synthesis of Resource Optimal Chemical Processes / Guido Dunnebier / Matthias Bohm / Gerhard Then / Felix Hanisch / Christian Drumm
  • 14.1. Introduction / Minbo Yang / Fengqi You / Jian Gong
  • 14.1.1. Background and Motivation / Minbo Yang / Fengqi You / Jian Gong
  • 14.1.2. Resource Optimal Chemical Processes / Minbo Yang / Fengqi You / Jian Gong
  • 14.2. Heuristic Methods / Minbo Yang / Fengqi You / Jian Gong
  • 14.2.1. Pinch Technology for Resource Network Integration / Minbo Yang / Fengqi You / Jian Gong
  • 14.2.2. Other Heuristic Methods for Process Synthesis / Minbo Yang / Fengqi You / Jian Gong
  • 14.3. Superstructure Optimization Based Method / Minbo Yang / Jian Gong / Fengqi You
  • 14.3.1. Superstructure Generation / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.2. Data Extraction / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.3. Mathematical Model Formulation / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.3.1. Mass Balance Constraints / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.3.2. Energy Balance Constraints / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.3.3. Economic Evaluation Constraints / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.3.4. Objective Function / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.4. Solution Methods / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.5. Applications of Synthesis of Resource Optimal Chemical Processes / Minbo Yang / Fengqi You / Jian Gong
  • 14.3.6. Hybrid Methods / Minbo Yang / Fengqi You / Jian Gong
  • 14.4. Other Impact Factors on Resource Optimal Chemical Processes / Minbo Yang / Fengqi You / Jian Gong
  • 14.4.1. Environmental Factors / Minbo Yang / Fengqi You / Jian Gong
  • 14.4.2. Social Factors / Minbo Yang / Fengqi You / Jian Gong
  • 14.4.3. Uncertainty / Minbo Yang / Fengqi You / Jian Gong
  • 14.5. Conclusion / Minbo Yang / Fengqi You / Jian Gong
  • References / Minbo Yang / Fengqi You / Jian Gong
  • 15. Optimization-Based Synthesis of Resource-Efficient Utility Systems / Minbo Yang / Fengqi You / Jian Gong
  • 15.1. Introduction / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.2. Definition of Utility Systems / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.3. Problem Statement / Matthias Lampe / Philip Voll / Maike Hennen / Bjorn Bahl / Andre Bardow
  • 15.4. Modelling / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.4.1. Model Complexity / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.4.1.1. Time Representation / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.4.1.2. Part-Load Performance / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.4.2. Decomposition / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.4.3. Time-Series Aggregation / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.5. Solution Methods for Optimal Synthesis of Utility Systems / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.5.1. Superstructure-Based Optimal Synthesis of Utility Systems / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.5.2. Superstructure-Free Optimal Synthesis of Utility Systems / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.6. Analysis of Multiple Solutions for Decision Support / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.6.1. Multi-objective Optimization / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.6.2. Near-Optimal Solutions / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.6.3. Optimization under Uncertainty / Maike Hennen / Matthias Lampe / Bjorn Bahl / Andre Bardow / Philip Voll
  • 15.7. Industrial Case Study / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.7.1. Description of the Case Study / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.7.2. Economically Optimal Solution / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.7.3. Multi-objective Optimization / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.7.4. Near-Optimal Solutions / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 15.8. Conclusions for the Utility System Synthesis in Industrial Practice / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • Acknowledgments / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • References / Bjorn Bahl / Maike Hennen / Andre Bardow / Philip Voll / Matthias Lampe
  • 16. Perspective on Process Integration / Bjorn Bahl / Maike Hennen / Matthias Lampe / Philip Voll / Andre Bardow
  • 16.1. Overview / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.2. Introduction / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.3. Heat Integration / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.3.1. Determining ΔTmin / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.3.2. Composite and Grand Composite Curves / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.3.3. Identifying Penalising Heat Exchangers / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.3.4. Improving the Heat Recovery Targets / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.3.5. Caste Study I: Application of Advanced Heat Integration Technologies / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4. Energy and Resource Integration / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.1. Multi-Level Energy Requirement Definition / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.2. Problem Formulation / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.3. Heat Cascade / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.4. Mass Integration / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.5. Electricity / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.6. Transportation / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.7. Investment and Operating Costs / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.8. Alternative Objectives / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.9. Caste Study II: Site-Scale Integration and Multi-Level Energy Requirement Definition / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.9.1. Single Process Integration (SPI) / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.9.2. Total Site Integration (TSI) / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.9.3. Heat Recovery Improvement Potentials / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.4.9.4. Integration and Optimization of Energy Conversion Units / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 16.5. Summary / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • References / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 17. Industrial Symbiosis / Ivan Kantor / Francois Marechal / Nasibeh Pouransari
  • 17.1. Syn-Bios and Syn-Ergon / Greet Van Eetvelde
  • 17.1.1. Economies of Scale and Scope / Greet Van Eetvelde
  • 17.1.2. Economies in Transition / Greet Van Eetvelde
  • 17.1.3. Low-Carbon Economies / Greet Van Eetvelde
  • 17.2. Industrial Symbiosis / Greet Van Eetvelde
  • 17.2.1. State of the Art - IS Practice / Greet Van Eetvelde
  • 17.2.1.1. IS Parks / Greet Van Eetvelde
  • 17.2.1.2. IS Technologies / Greet Van Eetvelde
  • 17.2.1.3. IS Services / Greet Van Eetvelde
  • 17.2.1.4. IS Policies / Greet Van Eetvelde
  • Contents note continued: 17.2.2. State of the Art - IS Research / Greet Van Eetvelde
  • 17.2.3. Innovation Potential / Greet Van Eetvelde
  • 17.2.4. EU Perspective / Greet Van Eetvelde
  • 17.3. Business Clustering / Greet Van Eetvelde
  • 17.3.1. Business Parks and Park Management / Greet Van Eetvelde
  • 17.3.2. Total Site Integration and Site Management / Greet Van Eetvelde
  • 17.3.3. Cross-Sectorial Gustering and Cluster Management / Greet Van Eetvelde
  • 17.4. Conclusions / Greet Van Eetvelde
  • References / Greet Van Eetvelde
  • 18. Organizational Culture for Resource Efficiency / Greet Van Eetvelde
  • 18.1. Introduction / Stefan Kramer / Klaus Goldbeck
  • 18.2. Basics / Stefan Kramer / Klaus Goldbeck
  • 18.2.1. Trust and Motivation / Stefan Kramer / Klaus Goldbeck
  • 18.2.2. Justice and Fairness / Stefan Kramer / Klaus Goldbeck
  • 18.2.3. Strokes / Stefan Kramer / Klaus Goldbeck
  • 18.2.4. Orientation / Stefan Kramer / Klaus Goldbeck
  • 18.3. Implementation / Stefan Kramer / Klaus Goldbeck
  • 18.3.1. Differentiation / Stefan Kramer / Klaus Goldbeck
  • 18.3.2. Principles / Stefan Kramer / Klaus Goldbeck
  • 18.3.3. Desired Result / Stefan Kramer / Klaus Goldbeck
  • 18.3.4. Integration / Stefan Kramer / Klaus Goldbeck
  • 18.3.5. Standard / Klaus Goldbeck / Stefan Kramer
  • 18.3.6. Measures / Klaus Goldbeck / Stefan Kramer
  • 18.3.7. Rules / Stefan Kramer / Klaus Goldbeck
  • 18.3.8. Performance / Klaus Goldbeck / Stefan Kramer
  • 18.3.9. Resistance / Klaus Goldbeck / Stefan Kramer
  • 18.3.10. Incentives / Klaus Goldbeck / Stefan Kramer
  • 18.3.11. Feedback Loops / Stefan Kramer / Klaus Goldbeck
  • 18.4. Giving It a Meaning / Stefan Kramer / Klaus Goldbeck
  • 18.5. Closing Remarks / Klaus Goldbeck / Stefan Kramer
  • Acknowledgments / Stefan Kramer / Klaus Goldbeck
  • References / Klaus Goldbeck / Stefan Kramer.