|
|
|
|
LEADER |
00000nam a2200000Mi 4500 |
001 |
b3172438 |
003 |
CStclU |
005 |
20180721154730.6 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
180323s2018 flua o 000 0 eng d |
020 |
|
|
|a 9781315148977
|q (e-book)
|
020 |
|
|
|a 1315148978
|
020 |
|
|
|a 9781351371896
|q (e-book ;
|q PDF)
|
020 |
|
|
|a 1351371894
|
020 |
|
|
|z 9781138554399
|
020 |
|
|
|z 1138554391
|
035 |
|
|
|a (NhCcYBP)ebc5389983
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a TA330
|b .R27 2018
|
072 |
|
7 |
|a MAT003000
|2 bisacsh
|
072 |
|
7 |
|a TEC029000
|2 bisacsh
|
072 |
|
7 |
|a TEC032000
|2 bisacsh
|
082 |
1 |
4 |
|a [E]
|
082 |
0 |
4 |
|a [E]
|
082 |
0 |
4 |
|a WB004
|
082 |
0 |
4 |
|a WB021
|
082 |
0 |
4 |
|a WB050
|
082 |
0 |
4 |
|a WB057
|
082 |
0 |
4 |
|a WB069
|
082 |
0 |
4 |
|a WB075
|
082 |
0 |
4 |
|a SCEB036015
|
082 |
0 |
4 |
|a SCEC25
|
245 |
0 |
0 |
|a Advanced Mathematical Techniques in Engineering Sciences /
|c editors, Mangey Ram, J. Paulo Davim.
|
250 |
|
|
|a First edition.
|
264 |
|
1 |
|a Boca Raton, FL :
|b CRC Press,
|c 2018.
|
300 |
|
|
|a 1 online resource :
|b text file, PDF.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Science, technology, and management series
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.1.
|t Designation /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.2.
|t Laplace transform and operations mapping /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.3.
|t Linear substitutions /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.4.
|t Differentiation and integration /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.5.
|t Multiplication and curtailing /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.6.
|t image of a unit function and some other simple functions /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.7.
|t Examples of solving some problems of mechanics /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.8.
|t Laplace transform in problems of studying oscillation of rods /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.9.
|t Relationship between the velocities of the particles of an elementary volume of a cylindrical rod with stresses /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.10.
|t inertial disk rotating at the end of the rod /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.11.
|t Equations of torsional oscillations of a disk /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.12.
|t Equations of longitudinal oscillations of a disk /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.13.
|t Application of the Laplace transform in engineering technology /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.13.1.
|t Method of studying oscillations of the velocities of motion and stresses in mechanisms containing rod systems /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.13.2.
|t Features of functioning of a drive with a long force line /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 1.13.3.
|t Investigation of dynamic features of the system in the technologies of deephole machining /
|r Leonid Kondratenko /
|r Lubov Mironova --
|t References /
|r Leonid Kondratenko /
|r Lubov Mironova --
|g 2.1.
|t Introduction /
|r Alka Munjal /
|r Smita Sonker --
|g 2.2.
|t Periodic functions /
|r Alka Munjal /
|r Smita Sonker --
|g 2.3.
|t Orthogonality of sine and cosine functions /
|r Alka Munjal /
|r Smita Sonker --
|g 2.4.
|t Fourier series /
|r Alka Munjal /
|r Smita Sonker --
|g 2.5.
|t Dirichlet's theorem /
|r Alka Munjal /
|r Smita Sonker --
|g 2.6.
|t Riemann-Lebesgue lemma /
|r Alka Munjal /
|r Smita Sonker --
|g 2.7.
|t Term-wise differentiation /
|r Alka Munjal /
|r Smita Sonker --
|g 2.8.
|t Convergence of Fourier series /
|r Alka Munjal /
|r Smita Sonker --
|g 2.9.
|t Small order /
|r Alka Munjal /
|r Smita Sonker --
|g 2.10.
|t Big "oh" for functions /
|r Alka Munjal /
|r Smita Sonker --
|g 2.11.
|t Fourier analysis and Fourier transform /
|r Alka Munjal /
|r Smita Sonker --
|g 2.12.
|t Fourier transform /
|r Alka Munjal /
|r Smita Sonker --
|g 2.13.
|t Gibbs phenomenon /
|r Alka Munjal /
|r Smita Sonker --
|g 2.13.1.
|t Gibbs phenomenon with an example /
|r Alka Munjal /
|r Smita Sonker --
|g 2.13.2.
|t Results related to Gibbs phenomenon /
|r Alka Munjal /
|r Smita Sonker --
|g 2.14.
|t Trigonometric Fourier approximation /
|r Alka Munjal /
|r Smita Sonker --
|g 2.15.
|t Summability /
|r Alka Munjal /
|r Smita Sonker --
|g 2.15.1.
|t Ordinary summability /
|r Alka Munjal /
|r Smita Sonker --
|g 2.15.2.
|t Absolute summability /
|r Alka Munjal /
|r Smita Sonker --
|g 2.15.3.
|t Strong summability /
|r Alka Munjal /
|r Smita Sonker --
|g 2.16.
|t Methods for summability /
|r Alka Munjal /
|r Smita Sonker --
|g 2.17.
|t Regularity condition /
|r Alka Munjal /
|r Smita Sonker --
|g 2.18.
|t Norm /
|r Alka Munjal /
|r Smita Sonker --
|g 2.19.
|t Modulus of continuity /
|r Alka Munjal /
|r Smita Sonker --
|g 2.20.
|t Lipschitz condition /
|r Alka Munjal /
|r Smita Sonker --
|g 2.21.
|t Various Lipschitz classes /
|r Alka Munjal /
|r Smita Sonker --
|g 2.22.
|t Degree of approximation /
|r Alka Munjal /
|r Smita Sonker --
|g 2.23.
|t Fourier series and music /
|r Alka Munjal /
|r Smita Sonker --
|g 2.24.
|t Applications and significant uses /
|r Alka Munjal /
|r Smita Sonker --
|t References /
|r Alka Munjal /
|r Smita Sonker --
|g 3.1.
|t Introduction: Soft computing /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.2.
|t Fuzzy logic /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.2.1.
|t Evolution of fuzzy logic /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.3.
|t Fuzzy sets /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.3.1.
|t Equal fuzzy sets /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.3.2.
|t Membership function /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.3.2.1.
|t Z-Shaped membership function /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.3.2.2.
|t Triangular membership function /
|r Dinesh Bisht /
|r Pankaj Kumar Srivastava /
|r Mangey Ram --
|g 3.3.2.3.
|t Trapezoidal membership function /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.3.2.4.
|t Gaussian membership function /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.4.
|t Fuzzy rule base system /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.5.
|t Fuzzy defuzzification /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.5.1.
|t Center of area (CoA) method /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.5.2.
|t Max-membership function /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.5.3.
|t Weighted average method /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.5.4.
|t Mean-max method /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.5.5.
|t Center of sums /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.6.
|t Comparison of crisp to fuzzy /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.7.
|t Examples of uses of fuzzy logic /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.
|t Artificial neural networks /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.1.
|t Artificial neurons /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.2.
|t Firing rule /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.3.
|t Different types of neural networks /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.3.1.
|t Feedback ANN /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.3.2.
|t Feed-forward ANN /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.8.3.3.
|t Classification-prediction ANN /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.9.
|t Training of neural networks /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.9.1.
|t Supervised training /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.9.2.
|t Unsupervised training /
|r Mangey Ram /
|r Dinesh Bisht /
|r Pankaj Kumar Srivastava --
|g 3.9.3.
|t Reinforced training /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.10.
|t Adaptive neuro fuzzy inference system /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.11.
|t Genetic algorithms /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.12.
|t Working of genetic algorithm /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 3.13.
|t Applications of soft computing /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|t References /
|r Pankaj Kumar Srivastava /
|r Mangey Ram /
|r Dinesh Bisht --
|g 4.1.
|t Introduction /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.2.
|t Preliminaries /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.2.1.
|t Concepts of solution /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.3.
|t Mathematical model /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.4.
|t Solution procedure /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.4.1.
|t Fuzzy programming /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.4.2.
|t Goal programming /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.4.3.
|t Revised multi-choice programming /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.4.4.
|t Vogel approximation method /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.4.5.
|t Merits and demerits /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.5.
|t Numerical example /
|r Gurupada Maity /
|r Sankar Kumar Roy --
|g 4.5.1.
|t Fuzzy programming /
|r Gurupada Maity /
|r Sankar Kumar Roy --
|g 4.5.2.
|t Goal programming /
|r Gurupada Maity /
|r Sankar Kumar Roy --
|g 4.5.3.
|t Revised multi-choice goal programming /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.5.4.
|t Vogel approximation method /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.6.
|t Comparison /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 4.7.
|t Conclusion and future study /
|r Gurupada Maity /
|r Sankar Kumar Roy --
|t Acknowledgment /
|r Gurupada Maity /
|r Sankar Kumar Roy --
|t References /
|r Sankar Kumar Roy /
|r Gurupada Maity --
|g 5.1.
|t Introduction /
|r Boby John /
|r K.K. Chowdhury --
|g 5.2.
|t Simultaneous optimization of multiple characteristics /
|r K.K. Chowdhury /
|r Boby John --
|g 5.2.1.
|t Derringer's desirability function method /
|r K.K. Chowdhury /
|r Boby John --
|g 5.2.2.
|t Taguchi's loss function approach /
|r Boby John /
|r K.K. Chowdhury --
|g 5.2.3.
|t Fuzzy logic approach /
|r Boby John /
|r K.K. Chowdhury --
|g 5.2.4.
|t Dual-response surface methodology /
|r K.K. Chowdhury /
|r Boby John --
|g 5.3.
|t Data collection and modeling /
|r Boby John /
|r K.K. Chowdhury --
|g 5.4.
|t Optimization /
|r Boby John /
|r K.K. Chowdhury --
|g 5.5.
|t Validation /
|r Boby John /
|r K.K. Chowdhury --
|g 5.6.
|t Conclusion /
|r K.K. Chowdhury /
|r Boby John --
|t References /
|r K.K. Chowdhury /
|r Boby John --
|g 6.1.
|t Introduction /
|r Sangeeta Pant /
|r S.B. Singh /
|r Shshank Chaube /
|r Anuj Kumar --
|g 6.2.
|t Basic concept of time-dependent CBFS and some definitions /
|r Sangeeta Pant /
|r S.B. Singh /
|r Shshank Chaube /
|r Anuj Kumar --
|g 6.2.1.
|t Time-dependent CBFS /
|r Shshank Chaube /
|r S.B. Singh /
|r Sangeeta Pant /
|r Anuj Kumar --
|g 6.2.2.
|t Normal CBFS /
|r Shshank Chaube /
|r S.B. Singh /
|r Anuj Kumar /
|r Sangeeta Pant --
|g 6.2.3.
|t Convex CBFS /
|r Sangeeta Pant /
|r Anuj Kumar /
|r Shshank Chaube /
|r S.B. Singh --
|g 6.2.4.
|t Conflicting bifuzzy number /
|r Shshank Chaube /
|r S.B. Singh /
|r Sangeeta Pant /
|r Anuj Kumar --
|g 6.2.5.
|t (α, β)-Cut of a time-dependent CBFS /
|r Shshank Chaube /
|r S.B. Singh /
|r Sangeeta Pant /
|r Anuj Kumar --
|g 6.2.6.
|t Triangular time-dependent CBFS /
|r Shshank Chaube /
|r S.B. Singh /
|r Anuj Kumar /
|r Sangeeta Pant --
|
505 |
0 |
0 |
|a Contents note continued:
|g 6.3.
|t Problem formulation /
|r Shshank Chaube /
|r S.B. Singh /
|r Sangeeta Pant /
|r Anuj Kumar --
|g 6.4.
|t Reliability evaluation with time-dependent CBFN /
|r Shshank Chaube /
|r Sangeeta Pant /
|r S.B. Singh /
|r Anuj Kumar --
|g 6.5.
|t Reliability evaluation of series and parallel system having components following time-dependent conflicting bifuzzy failure rate /
|r Shshank Chaube /
|r S.B. Singh /
|r Sangeeta Pant /
|r Anuj Kumar --
|g 6.5.1.
|t Series system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.5.2.
|t Parallel system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.5.3.
|t Parallel-series system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.5.4.
|t Series-parallel system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.6.
|t Examples /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.6.1.
|t Series system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.6.2.
|t Parallel system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.6.3.
|t Parallel-series system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.6.4.
|t Series-parallel system /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 6.7.
|t Conclusion /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|t References /
|r Shshank Chaube /
|r Anuj Kumar /
|r Sangeeta Pant /
|r S.B. Singh --
|g 7.1.
|t Introduction /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.2.
|t Model description /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.3.
|t Parametric estimation method /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.3.1.
|t Single failure-occurrence time data case /
|r Yasuhiro Saito /
|r Tadashi Dohi --
|g 7.3.2.
|t Multiple failure-occurrence time data case /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.
|t Nonparametric estimation methods /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.1.
|t Constrained nonparametric ML estimator /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.1.1.
|t Single failure-occurrence time data case /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.1.2.
|t Multiple failure-occurrence time data case /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.2.
|t Kernel-based approach /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.2.1.
|t Single failure-occurrence time data case /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.4.2.2.
|t Multiple failure-occurrence time data case /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.5.
|t Numerical examples /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.5.1.
|t Simulation experiments with single minimal repair data /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.5.2.
|t Real example with multiple minimal repair data sets /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 7.6.
|t Conclusions /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|t References /
|r Tadashi Dohi /
|r Yasuhiro Saito --
|g 8.1.
|t Introduction /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.2.
|t YouTube view count: A twofold perspective /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.3.
|t Literature review /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.4.
|t Model development /
|r N. Aggrawal /
|r A. Arora /
|r A. Anand /
|r M.S. Irshad --
|g 8.4.1.
|t Model I: Linear growth /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.4.2.
|t Model II: Exponential growth /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.4.3.
|t Model III: Repeat viewing /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.5.
|t Data analysis and model validation /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|g 8.6.
|t Conclusion /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand /
|r A. Arora --
|t References /
|r A. Arora /
|r N. Aggrawal /
|r M.S. Irshad /
|r A. Anand --
|g 9.1.
|t Introduction /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 9.2.
|t Mathematical modeling /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 9.2.1.
|t Early market adoption model /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 9.2.2.
|t Main market adoption model /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 9.2.3.
|t Total adoption modeling /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 9.3.
|t Parameter estimation /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 9.4.
|t Discussion and summary /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|t References /
|r A. Anand /
|r O. Singh /
|r R. Aggarwal --
|g 10.1.
|t Introduction /
|r Piotr Kulczycki --
|g 10.2.
|t Methodology of kernel estimators /
|r Piotr Kulczycki --
|g 10.2.1.
|t Modification of smoothing parameter /
|r Piotr Kulczycki --
|g 10.2.2.
|t Support boundary /
|r Piotr Kulczycki --
|g 10.3.
|t Identification of atypical elements /
|r Piotr Kulczycki --
|g 10.3.1.
|t Basic version of the procedure /
|r Piotr Kulczycki --
|g 10.3.2.
|t Extended pattern of population /
|r Piotr Kulczycki --
|g 10.3.3.
|t Equal-sized patterns of atypical and typical elements /
|r Piotr Kulczycki --
|g 10.3.4.
|t Comments for Section 10.3 /
|r Piotr Kulczycki --
|g 10.4.
|t Clustering /
|r Piotr Kulczycki --
|g 10.4.1.
|t Procedure /
|r Piotr Kulczycki --
|g 10.4.2.
|t Influence of the parameters values on obtained results /
|r Piotr Kulczycki --
|g 10.4.3.
|t Comments for Section 10.4 /
|r Piotr Kulczycki --
|g 10.5.
|t Classification /
|r Piotr Kulczycki --
|g 10.5.1.
|t Bayes classification /
|r Piotr Kulczycki --
|g 10.5.2.
|t Correction of values of smoothing parameter and modification intensity /
|r Piotr Kulczycki --
|g 10.5.3.
|t Reduction to pattern sizes /
|r Piotr Kulczycki --
|g 10.5.4.
|t Structure for nonstationary patterns (concept drift) /
|r Piotr Kulczycki --
|g 10.5.5.
|t Comments for Section 10.5 /
|r Piotr Kulczycki --
|g 10.6.
|t Example practical application and final comments /
|r Piotr Kulczycki --
|t Acknowledgments /
|r Piotr Kulczycki --
|t References /
|r Piotr Kulczycki --
|g 11.1.
|t Introduction /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.2.
|t Two-parameter Weibull distribution /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.3.
|t Lower statistical γ-content tolerance limit with expected (1 - α)-confidence /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.4.
|t Upper statistical γ-content tolerance limit with expected (1 - α)-confidence /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.5.
|t Lower statistical (1 - α)-expectation tolerance limit /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.6.
|t Upper statistical (1 - α)-expectation tolerance limit /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.7.
|t Numerical example 1 /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.8.
|t Numerical example 2 /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 11.9.
|t Conclusion /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|t References /
|r N.A. Nechval /
|r G. Berzins /
|r K.N. Nechval --
|g 12.1.
|t Introduction /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.2.
|t Kinematics and dynamics of the biped robot /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.2.1.
|t Dynamic balance margin while ascending the staircase /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.2.2.
|t Dynamic balance margin while descending the staircase /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.2.3.
|t Design of torque-based PID controllers for the biped robot /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.3.
|t MCIWO-based PID controller /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.4.
|t MCIWO-NN-based PID controller /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.5.
|t Results and discussion /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.5.1.
|t Ascending the staircase /
|r Ravi Kumar Mandava /
|r Pandu R. Vundavilli --
|g 12.5.2.
|t Descending the staircase /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 12.6.
|t Conclusions /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|t References /
|r Pandu R. Vundavilli /
|r Ravi Kumar Mandava --
|g 13.1.
|t Introduction /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.
|t Materials and methods /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.1.
|t Data /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.
|t Machine learning algorithms /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.1.
|t Neural network models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.2.
|t NN model building with R programming tools /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.3.
|t Support vector regression models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.4.
|t Decision tree models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.5.
|t Decision tree model building with R programming tools /
|r Adesh Kumar Sharma /
|r Ravinder Malhotra /
|r Atish Kumar Chakravarty --
|g 13.2.2.6.
|t Random forest models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.7.
|t Linear regression models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.2.2.8.
|t Model evaluation error metrics /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.
|t Results and discussion /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.1.
|t Neural Network Models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.2.
|t Support vector regression models /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.3.
|t Decision tree regression model /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.4.
|t Random forest regression model /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.5.
|t Linear model for regression /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.3.6.
|t Machine learning models vis-a-vis linear regression model /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|g 13.4.
|t Conclusion /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|t References /
|r Adesh Kumar Sharma /
|r Atish Kumar Chakravarty /
|r Ravinder Malhotra --
|
505 |
0 |
0 |
|a Contents note continued:
|g 14.1.
|t Introduction /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.2.
|t Governing equations /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.2.1.
|t Spalart-Allrnaras model /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.2.2.
|t k-e Model /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.2.3.
|t SST k-w model /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.2.4.
|t k-e-C-f Model /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.3.
|t Grid independence test and solution methodology /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.4.
|t Results and discussion /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 14.5.
|t Conclusions /
|r Michele Trancossi /
|r Maharshi Subhash --
|t Acknowledgments /
|r Michele Trancossi /
|r Maharshi Subhash --
|t Nomenclature /
|r Michele Trancossi /
|r Maharshi Subhash --
|t References /
|r Michele Trancossi /
|r Maharshi Subhash --
|g 15.1.
|t Introduction /
|r Geeta Arora --
|g 15.2.
|t Collocation method /
|r Geeta Arora --
|g 15.3.
|t B-spline /
|r Geeta Arora --
|g 15.3.1.
|t B-spline of degree zero /
|r Geeta Arora --
|g 15.3.2.
|t First-degree (linear) B-spline /
|r Geeta Arora --
|g 15.3.3.
|t Second-degree (quadratic) B-spline /
|r Geeta Arora --
|g 15.4.
|t Characteristics of B-spline basis functions /
|r Geeta Arora --
|g 15.5.
|t Types of B-spline /
|r Geeta Arora --
|g 15.5.1.
|t Trigonometric B-spline basis functions /
|r Geeta Arora --
|g 15.5.2.
|t Exponential B-spline basis functions /
|r Geeta Arora --
|g 15.6.
|t Methodology: Collocation method using B-spline basis function /
|r Geeta Arora --
|g 15.7.
|t Numerical solution of advection diffusion equation using collocation method /
|r Geeta Arora --
|g 15.7.1.
|t Using B-spline basis functions /
|r Geeta Arora --
|g 15.7.2.
|t Using trigonometric B-spline basis functions /
|r Geeta Arora --
|g 15.8.
|t Numerical example /
|r Geeta Arora --
|t References /
|r Geeta Arora --
|g 16.1.
|t Introduction /
|r Neelima Bhengra --
|g 16.2.
|t Problem formulation and its solution /
|r Neelima Bhengra --
|g 16.2.1.
|t Solution for the lower highly anisotropic half-space /
|r Neelima Bhengra --
|g 16.2.2.
|t Solution for the upper fluid-saturated poroelastic half-space /
|r Neelima Bhengra --
|g 16.3.
|t Boundary conditions /
|r Neelima Bhengra --
|g 16.4.
|t Solution of the first-order approximation of the corrugation /
|r Neelima Bhengra --
|g 16.5.
|t Solution for second-order approximation of the corrugation /
|r Neelima Bhengra --
|g 16.6.
|t Special case of a simple harmonic interface /
|r Neelima Bhengra --
|g 16.7.
|t Particular cases for special case /
|r Neelima Bhengra --
|g 16.8.
|t Energy distribution /
|r Neelima Bhengra --
|g 16.9.
|t Numerical discussion and results /
|r Neelima Bhengra --
|g 16.9.1.
|t Effect of corrugation amplitude /
|r Neelima Bhengra --
|g 16.9.2.
|t Effect of corrugation wavelength /
|r Neelima Bhengra --
|g 16.9.3.
|t Effect of frequency factor /
|r Neelima Bhengra --
|g 16.9.4.
|t Influence of initial stress parameter on poroelastic half-space /
|r Neelima Bhengra --
|g 16.9.5.
|t Influence of initial stress parameter on highly anisotropic half-space /
|r Neelima Bhengra --
|g 16.10.
|t Concluding remarks /
|r Neelima Bhengra --
|t References /
|r Neelima Bhengra.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
650 |
|
0 |
|a Production management.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
0 |
|a Mechanics, Applied.
|
700 |
1 |
|
|a Ram, Mangey,
|e editor.
|
700 |
1 |
|
|a Davim, J. Paulo,
|e editor.
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|z 9781351371896
|z 9781351371889
|z 9781315148977
|z 9781351371872
|z 9781138554399
|
830 |
|
0 |
|a Science, technology, and management series.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5389983
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b31724383
|b 240604
|c 180806
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g flu
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 5b94e81b-3677-578f-b603-257890342a75
|s 880aa384-86cb-5afa-8015-18ae54df5197
|t 0
|