Computational texture and patterns : from textons to deep learning /

Saved in:
Bibliographic Details
Main Author: Dana, Kristin J., 1968- (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
Published: [San Rafael, California] : Morgan & Claypool, 2018.
Series:Synthesis lectures on computer vision ; # 14.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)

MARC

LEADER 00000nam a2200000Ii 4500
001 b3180239
003 CStclU
005 20181019083452.2
006 m eo d
007 cr cn||||m|||a
008 180926s2018 caua foab 000 0 eng d
020 |a 9781681730127  |q (ebook) 
020 |a 168173012X  |q (ebook) 
020 |z 9781681732695  |q (hardcover) 
020 |z 9781681730110  |q (paperback) 
024 7 |a 10.2200/S00819ED1V01Y201712COV014  |2 doi 
035 |a (NhCcYBP)ebc5520203 
040 |a NhCcYBP  |c NhCcYBP 
050 4 |a TK7882.P3  |b D253 2018 
082 0 4 |a 006.4  |2 23 
100 1 |a Dana, Kristin J.,  |d 1968-  |e author. 
245 1 0 |a Computational texture and patterns :  |b from textons to deep learning /  |c Kristin J. Dana. 
264 1 |a [San Rafael, California] :  |b Morgan & Claypool,  |c 2018. 
300 |a 1 online resource (xiii, 99 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Synthesis lectures on computer vision,  |x 2153-1064 ;  |v # 14 
504 |a Includes bibliographical references (pages 77-98). 
505 0 |a 1. Visual patterns and texture -- 1.1 Patterns in nature -- 1.2 Big data patterns -- 1.3 Temporal patterns -- 1.4 Organization -- 
505 8 |a 2. Textons in human and computer vision -- 2.1 Pre-attentive vision -- 2.2 Texton: the early definition -- 2.3 What are textons? Then and now -- 
505 8 |a 3. Texture recognition -- 3.1 Traditional methods of texture recognition -- 3.2 From textons to deep learning for recognition -- 3.3 Texture recognition with deep learning -- 3.4 Material recognition vs. texture recognition -- 
505 8 |a 4. Texture segmentation -- 4.1 Traditional methods of texture segmentation -- 4.1.1 Graph-based methods -- 4.1.2 Mean shift methods -- 4.1.3 Markov random fields -- 4.2 Segmentation with deep learning -- 
505 8 |a 5. Texture synthesis -- 5.1 Traditional methods for texture synthesis -- 5.2 Texture synthesis with deep learning -- 
505 8 |a 6. Texture style transfer -- 6.1 Traditional methods of style transfer -- 6.2 Texture style transfer with deep learning -- 6.3 Face style transfer -- 
505 8 |a 7. Return of the pyramids -- 7.1 Advantages of pyramid methods -- 
505 8 |a 8. Open issues in understanding visual patterns -- 8.1 Discovering unknown patterns -- 8.2 Detecting subtle change -- 8.3 Perceptual metrics -- 
505 8 |a 9. Applications for texture and patterns -- 9.1 Medical imaging and quantitative dermatology -- 9.2 Texture matching in industry -- 9.3 E-commerce -- 9.4 Textured solar panels -- 9.5 Road analysis for automated driving -- 
505 8 |a 10. Tools for mining patterns: cloud services and software libraries -- 10.1 Software libraries -- 10.2 Cloud services -- 
505 8 |a A. A concise description of deep learning -- A.1 Multilayer perceptron -- A.2 Convolutional neural networks -- A.3 Alexnet, Dense-Net, Res-Nets, and all that -- 
505 8 |a Bibliography -- Author's biography. 
533 |a Electronic reproduction.  |b Ann Arbor, MI  |n Available via World Wide Web. 
588 |a Title from PDF title page (viewed on September 26, 2018). 
650 0 |a Pattern recognition systems. 
650 0 |a Texture mapping. 
653 |a texture 
653 |a patterns 
653 |a deep learning 
653 |a machine learning 
653 |a segmentation 
653 |a synthesis 
653 |a recognition 
653 |a textons 
653 |a style transfer 
710 2 |a ProQuest (Firm) 
776 0 8 |i Print version:  |z 9781681730110  |z 9781681732695 
830 0 |a Synthesis lectures on computer vision ;  |v # 14.  |x 2153-1064 
856 4 0 |u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5520203  |z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)  |t 0 
907 |a .b31802394  |b 240604  |c 181022 
998 |a uww  |b    |c m  |d z   |e l  |f eng  |g cau  |h 0 
917 |a YBP DDA 
919 |a .ulebk  |b 2017-02-14 
999 f f |i 6173a7d9-baab-5241-ba6f-348afdce828c  |s 004190d6-27fb-5f92-92fe-076f19a3fefb  |t 0