|
|
|
|
LEADER |
00000nam a2200000Ii 4500 |
001 |
b3180239 |
003 |
CStclU |
005 |
20181019083452.2 |
006 |
m eo d |
007 |
cr cn||||m|||a |
008 |
180926s2018 caua foab 000 0 eng d |
020 |
|
|
|a 9781681730127
|q (ebook)
|
020 |
|
|
|a 168173012X
|q (ebook)
|
020 |
|
|
|z 9781681732695
|q (hardcover)
|
020 |
|
|
|z 9781681730110
|q (paperback)
|
024 |
7 |
|
|a 10.2200/S00819ED1V01Y201712COV014
|2 doi
|
035 |
|
|
|a (NhCcYBP)ebc5520203
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a TK7882.P3
|b D253 2018
|
082 |
0 |
4 |
|a 006.4
|2 23
|
100 |
1 |
|
|a Dana, Kristin J.,
|d 1968-
|e author.
|
245 |
1 |
0 |
|a Computational texture and patterns :
|b from textons to deep learning /
|c Kristin J. Dana.
|
264 |
|
1 |
|a [San Rafael, California] :
|b Morgan & Claypool,
|c 2018.
|
300 |
|
|
|a 1 online resource (xiii, 99 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Synthesis lectures on computer vision,
|x 2153-1064 ;
|v # 14
|
504 |
|
|
|a Includes bibliographical references (pages 77-98).
|
505 |
0 |
|
|a 1. Visual patterns and texture -- 1.1 Patterns in nature -- 1.2 Big data patterns -- 1.3 Temporal patterns -- 1.4 Organization --
|
505 |
8 |
|
|a 2. Textons in human and computer vision -- 2.1 Pre-attentive vision -- 2.2 Texton: the early definition -- 2.3 What are textons? Then and now --
|
505 |
8 |
|
|a 3. Texture recognition -- 3.1 Traditional methods of texture recognition -- 3.2 From textons to deep learning for recognition -- 3.3 Texture recognition with deep learning -- 3.4 Material recognition vs. texture recognition --
|
505 |
8 |
|
|a 4. Texture segmentation -- 4.1 Traditional methods of texture segmentation -- 4.1.1 Graph-based methods -- 4.1.2 Mean shift methods -- 4.1.3 Markov random fields -- 4.2 Segmentation with deep learning --
|
505 |
8 |
|
|a 5. Texture synthesis -- 5.1 Traditional methods for texture synthesis -- 5.2 Texture synthesis with deep learning --
|
505 |
8 |
|
|a 6. Texture style transfer -- 6.1 Traditional methods of style transfer -- 6.2 Texture style transfer with deep learning -- 6.3 Face style transfer --
|
505 |
8 |
|
|a 7. Return of the pyramids -- 7.1 Advantages of pyramid methods --
|
505 |
8 |
|
|a 8. Open issues in understanding visual patterns -- 8.1 Discovering unknown patterns -- 8.2 Detecting subtle change -- 8.3 Perceptual metrics --
|
505 |
8 |
|
|a 9. Applications for texture and patterns -- 9.1 Medical imaging and quantitative dermatology -- 9.2 Texture matching in industry -- 9.3 E-commerce -- 9.4 Textured solar panels -- 9.5 Road analysis for automated driving --
|
505 |
8 |
|
|a 10. Tools for mining patterns: cloud services and software libraries -- 10.1 Software libraries -- 10.2 Cloud services --
|
505 |
8 |
|
|a A. A concise description of deep learning -- A.1 Multilayer perceptron -- A.2 Convolutional neural networks -- A.3 Alexnet, Dense-Net, Res-Nets, and all that --
|
505 |
8 |
|
|a Bibliography -- Author's biography.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Title from PDF title page (viewed on September 26, 2018).
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
|
0 |
|a Texture mapping.
|
653 |
|
|
|a texture
|
653 |
|
|
|a patterns
|
653 |
|
|
|a deep learning
|
653 |
|
|
|a machine learning
|
653 |
|
|
|a segmentation
|
653 |
|
|
|a synthesis
|
653 |
|
|
|a recognition
|
653 |
|
|
|a textons
|
653 |
|
|
|a style transfer
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|i Print version:
|z 9781681730110
|z 9781681732695
|
830 |
|
0 |
|a Synthesis lectures on computer vision ;
|v # 14.
|x 2153-1064
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5520203
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b31802394
|b 240604
|c 181022
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g cau
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 6173a7d9-baab-5241-ba6f-348afdce828c
|s 004190d6-27fb-5f92-92fe-076f19a3fefb
|t 0
|