|
|
|
|
LEADER |
00000nam a22000001i 4500 |
001 |
b3180480 |
003 |
CStclU |
005 |
20181028161251.9 |
006 |
m |o d | |
007 |
cr |n||||||||| |
008 |
181028s2018 flu ob 001 0 eng d |
020 |
|
|
|a 9781351670395 (electronic bk.)
|
020 |
|
|
|a 1351670395 (electronic bk.)
|
020 |
|
|
|z 9781138060173
|
020 |
|
|
|z 1138060178
|
035 |
|
|
|a (NhCcYBP)ebc5508453
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a TH7687.9
|b .K37 2018
|
082 |
0 |
4 |
|a 697.9/3
|2 23
|
100 |
1 |
|
|a Karellas, Sotirios,
|e author.
|
245 |
1 |
0 |
|a Solar cooling technologies /
|c Sotirios Karellas, Roumpedakis Tryfon, Nikolaos Tzouganatos.
|
264 |
|
1 |
|a Boca Raton :
|b Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc,
|c 2018.
|
300 |
|
|
|a 1 online resource (pages cm.)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.1.
|t Global Energy Production and Resources --
|g 1.2.
|t Solar Energy --
|g 1.2.1.
|t Solar-Generated Electricity --
|g 1.2.2.
|t Solar Thermal Energy --
|g 1.2.3.
|t Cogeneration of Solar Electricity and Heat --
|g 1.2.4.
|t Solar Energy Storage --
|g 1.3.
|t Refrigeration Applications --
|g 1.3.1.
|t Historical Overview --
|g 1.4.
|t Refrigerants --
|g 1.4.1.
|t Safety, Toxicity, and Flammability --
|g 1.4.2.
|t Regulations and Phase Out --
|g 1.4.3.
|t Overview of Common Refrigerants and Their Basic Properties --
|g 1.4.4.
|t Optimal Properties of Refrigerants --
|g 1.5.
|t Solar Cooling Status --
|t Nomenclature --
|t References --
|g 2.1.
|t Carnot Cycle for Refrigeration --
|g 2.1.1.
|t Tutorial on the Carnot Cycle --
|g 2.2.
|t Main Components of Mechanical Refrigeration --
|g 2.2.1.
|t Compressor --
|g 2.2.1.1.
|t Tutorial on the Compressor --
|g 2.2.2.
|t Condenser --
|g 2.2.2.1.
|t Tutorial on the Condenser --
|g 2.2.3.
|t Evaporator --
|g 2.2.4.
|t Throttling Device --
|g 2.3.
|t Vapor Compression Cycle --
|g 2.3.1.
|t Actual Vapor Compression Cycle --
|g 2.3.2.
|t Subcooling and Superheating --
|g 2.3.3.
|t Multi-Stage and Cascade Vapor Compression Systems --
|g 2.3.4.
|t Tutorial on the Vapor Compression Cycle --
|g 2.4.
|t Absorption Cooling Cycle --
|g 2.4.1.
|t Multiple Stage Absorption Chillers --
|g 2.4.2.
|t Energy Considerations for an Absorption Cycle --
|g 2.4.3.
|t Exergy Considerations --
|g 2.4.4.
|t Tutorial on the Absorption Cycle --
|g 2.4.5.
|t Real Cycle --
|g 2.5.
|t Adsorption Cooling Cycle --
|g 2.5.1.
|t Energy and Exergy Analysis of the Adsorption Cycle --
|g 2.6.
|t Desiccant Cooling Cycle --
|g 2.6.1.
|t Energy Considerations for Desiccant Cooling --
|g 2.7.
|t Organic Rankine Cycles --
|g 2.7.1.
|t Energy and Exergy Considerations for the ORC --
|g 2.7.1.1.
|t Tutorial on the ORC --
|g 2.8.
|t Supercritical CO2 Cycle --
|t Nomenclature --
|t References --
|g 3.1.
|t Non-Concentrating Solar Collectors --
|g 3.1.1.
|t Flat-Plate Collectors --
|g 3.1.2.
|t Evacuated Tube Collectors --
|g 3.1.3.
|t Hybrid PV-Thermal Collectors (PVT) --
|g 3.2.
|t Concentrating Solar Collectors --
|g 3.2.1.
|t Non-Imaging Concentrating Collectors --
|g 3.2.2.
|t Imaging Concentrating Collectors --
|g 3.2.2.1.
|t Parabolic Trough Collectors --
|g 3.2.2.2.
|t Linear Fresnel Reflectors --
|g 3.2.2.3.
|t Central Tower Receivers (CTR) --
|g 3.2.2.4.
|t Paraboloidal Dish Reflectors --
|g 3.3.
|t Collector Applications --
|g 3.3.1.
|t Low-Temperature Solar Thermal Systems --
|g 3.3.1.1.
|t Water Heating Systems --
|g 3.3.1.2.
|t Space Heating Systems --
|g 3.3.1.3.
|t Space Cooling and Refrigeration Systems --
|g 3.3.1.4.
|t Water Desalination Systems --
|g 3.3.2.
|t Medium- and High-Temperature Solar Thermal Systems --
|g 3.3.2.1.
|t Industrial Process Heat Systems --
|g 3.3.2.2.
|t Solar Thermal Power Generation Systems --
|g 3.3.2.3.
|t Material Processing and Thermochemical Fuel Production Systems --
|t Nomenclature --
|t References --
|g 4.1.
|t Photovoltaic Systems --
|g 4.1.1.
|t PV Cell Materials --
|g 4.2.
|t Solar Electric Chillers --
|g 4.3.
|t Photovoltaic-Thermal Systems --
|t Nomenclature --
|t References --
|g 5.1.
|t Absorption Applications and Performance Data --
|g 5.1.1.
|t Working Pairs --
|g 5.1.2.
|t Absorption Units --
|g 5.1.3.
|t Theoretical Investigations on Absorption Units --
|g 5.1.4.
|t Experimental Investigations on Absorption Units --
|g 5.1.5.
|t Market Status --
|g 5.2.
|t Solar Cooling with Absorption Chillers --
|g 5.2.1.
|t Theoretical Investigations on Solar Absorption Cooling --
|g 5.2.2.
|t Dynamic Simulations of Solar Absorption Cooling Systems --
|g 5.2.3.
|t Performance Data from Experimental Setups --
|g 5.2.4.
|t Rethymno Village Hotel Solar Absorption System --
|g 5.2.5.
|t Demokritos Research Center Solar Absorption System --
|g 5.2.6.
|t Centre for Renewable Energy Sources and Saving Solar Cooling System --
|g 5.2.7.
|t ISI Pergine Business Center --
|g 5.2.8.
|t GICB Building Solar Cooling Application --
|g 5.2.9.
|t Agencia de la Salut Palica --
|g 5.2.10.
|t Inditex Arteixo Offices --
|g 5.2.11.
|t Technical College for Engineering in Butzbach --
|g 5.2.12.
|t Jiangmen Solar Absorption System --
|g 5.3.
|t Process Model --
|g 5.3.1.
|t Basic Assumptions --
|g 5.3.1.1.
|t Generator --
|g 5.3.1.2.
|t Absorber --
|g 5.3.1.3.
|t Condenser --
|g 5.3.1.4.
|t Evaporator --
|g 5.3.1.5.
|t Solution Heat Exchanger --
|g 5.3.1.6.
|t Heat Transfer Considerations --
|g 5.3.1.7.
|t System Pressures --
|g 5.3.1.8.
|t Overall Masses --
|t Nomenclature --
|t References --
|g 6.1.
|t Adsorbents --
|g 6.1.1.
|t Physical Adsorbents --
|g 6.1.2.
|t Chemical Adsorbents --
|g 6.1.3.
|t Composite Adsorbents --
|g 6.2.
|t Adsorption Refrigerants --
|g 6.3.
|t Adsorption Working Pairs --
|g 6.3.1.
|t Zeolite-Water --
|g 6.3.2.
|t Silica Gel-Water --
|g 6.3.3.
|t Activated Carbon-Ammonia --
|g 6.3.4.
|t Calcium Chloride-Methanol --
|g 6.3.5.
|t Working Pair Comparison Investigations --
|g 6.4.
|t Adsorption Chiller Applications --
|g 6.5.
|t Solar Cooling with Adsorption Chillers --
|g 6.6.
|t Overview of Adsorption Systems Reported in Literature --
|g 6.7.
|t Process Model --
|g 6.7.1.
|t Basic Assumptions --
|g 6.7.2.
|t Adsorption Isotherms and Kinetics --
|g 6.7.3.
|t Evaporator --
|g 6.7.4.
|t Adsorber --
|g 6.7.5.
|t Desorber --
|g 6.7.6.
|t Condenser --
|g 6.7.7.
|t Performance Indicators --
|g 6.8.
|t Model Solution and Results --
|g 6.9.
|t Adsorption Cooling Applications --
|g 6.9.1.
|t Fahrenheit eZea Case Study --
|g 6.9.1.1.
|t Phase 1 --
|g 6.9.1.2.
|t Phase 2 --
|g 6.9.1.3.
|t Phase 3 --
|g 6.9.1.4.
|t Phase 4 --
|g 6.9.1.5.
|t Performance Data --
|g 6.9.2.
|t University of Freiburg Hospital Case --
|g 6.9.3.
|t Fraunhofer Institute for Solar Technology-Freiburg, Germany --
|t Nomenclature --
|t References --
|g 7.1.
|t Alternative Cooling Systems --
|g 7.1.1.
|t Isothermal Dehumidification --
|g 7.1.2.
|t Ejector Cooling --
|g 7.1.3.
|t Stirling Cooling --
|g 7.1.4.
|t Electrochemical Cooling --
|g 7.2.
|t Hybrid Cooling Systems --
|g 7.2.1.
|t Desiccant-Brayton Cascade Cycle --
|g 7.2.2.
|t Desiccant-Vapor Compression Cycle --
|g 7.2.3.
|t Absorption-Rankine Cycle --
|g 7.2.4.
|t Ejector-VCC Hybrid System --
|g 7.2.5.
|t Ejector-Absorption Cycle --
|g 7.2.6.
|t Absorption-Compressor Cycle --
|g 7.2.7.
|t Electrochemical-Absorption Cycle --
|g 7.2.8.
|t Electro-Adsorption Cycle --
|g 7.3.
|t Hybrid Solar Cooling Systems --
|g 7.3.1.
|t Solar Ejector-VCC Coupling --
|g 7.3.2.
|t Solar Ejector-Rankine Cycle --
|g 7.3.3.
|t Solar Ejector-Absorption Cycle --
|g 7.3.4.
|t Solar Absorption-Rankine Cycle --
|g 7.3.5.
|t Solar Absorption-VCC Coupling --
|g 7.3.6.
|t Solar Absorption-Desiccant Cooling Cycle --
|g 7.3.7.
|t Solar Adsorption-Ejector --
|g 7.3.8.
|t Solar Adsorption-Desiccant Cooling Systems --
|t Nomenclature --
|t References --
|g 8.1.
|t Introduction --
|g 8.2.
|t Literature Review --
|g 8.3.
|t Case Study: The BioTRIC Trigeneration System --
|g 8.4.
|t Conclusions --
|t Nomenclature --
|t References --
|g 9.1.
|t Evaporative Cooling --
|g 9.1.1.
|t Direct Evaporative Cooling --
|g 9.1.2.
|t Indirect Evaporative Cooling --
|g 9.2.
|t Dehumidifiers/Regenerators --
|g 9.2.1.
|t Desiccant Wheel --
|g 9.2.2.
|t Packed Bed --
|g 9.2.3.
|t Spray Towers --
|g 9.2.4.
|t Falling Films --
|g 9.2.5.
|t Indirect Contact Dehumidifiers/Regenerators --
|g 9.3.
|t Solid Desiccant Cooling --
|g 9.3.1.
|t Silica Gel --
|g 9.3.2.
|t Zeolite --
|g 9.3.3.
|t Activated Clay --
|g 9.3.4.
|t Investigations on Solid Desiccant Cooling --
|g 9.4.
|t Liquid Desiccant Cooling --
|g 9.4.1.
|t Investigations on Liquid Desiccant Cooling --
|g 9.5.
|t Coupling with Solar Setups --
|g 9.5.1.
|t Market Status --
|g 9.5.2.
|t Theoretical and Experimental Investigations on Solar Desiccant Cooling --
|g 9.6.
|t Solar-Driven Desiccant Cooling Applications --
|g 9.6.1.
|t Okopark Hartberg Case --
|g 9.6.2.
|t Ineti Research Building --
|g 9.6.3.
|t Solar Info Center, Freiburg, Germany --
|t Nomenclature --
|t References --
|g 10.1.
|t Sensible Thermal Energy Storage --
|g 10.1.1.
|t Liquid Media --
|g 10.1.1.1.
|t Water --
|g 10.1.1.2.
|t Mineral Oil Hydrocarbons, Molten Salts, and Liquid Metals --
|g 10.1.2.
|t Solid Media --
|g 10.1.2.1.
|t Packed Bed Storage --
|g 10.1.2.2.
|t Borehole Thermal Energy Storage --
|g 10.1.2.3.
|t Particle Suspensions and Storage --
|g 10.2.
|t Latent Energy Storage (LTES) --
|g 10.2.1.
|t Phase Change Materials Classification and Properties --
|g 10.2.2.
|t Containment of Phase Change Materials --
|g 10.2.3.
|t Heat Transfer Enhancement Techniques --
|g 10.2.3.1.
|t Micro- and Nano-Encapsulation --
|g 10.2.3.2.
|t Insertion of Extended Heat-Exchange Surfaces --
|g 10.2.3.3.
|t Insertion of High-Conductivity Materials --
|g 10.2.3.4.
|t Impregnation of High-Conductivity Porous Structures --
|g 10.2.3.5.
|t Cascaded PCM Storage Systems --
|g 10.3.
|t Thermochemical Energy Storage (TCS) --
|g 10.3.1.
|t Chemical Sorption Processes --
|g 10.3.2.
|t Chemical Reaction Processes --
|t Nomenclature --
|t References --
|g 11.1.
|t Introduction --
|g 11.2.
|t Overview of Solar Cooling Technologies --
|g 11.3.
|t Literature Review of Solar Cooling Economic Evaluation Studies --
|g 11.4.
|t Compilation of Cost Data for Solar Cooling Technologies --
|g 11.5.
|t Economic Evaluation Case Studies --
|g 11.5.1.
|t System Description and Modeling --
|g 11.5.1.1.
|t Step 1> Selection of Geographical Location and Building Types, Calculation of Cooling Loads --
|g 11.5.1.2.
|t Step 2 Modeling and Sizing of the Solar Cooling Systems --
|g 11.5.2.
|t Economic Evaluation Methodology --
|g 11.5.3.
|t Economic Evaluation Results --
|g 11.5.3.1.
|t Optimization Results --
|g 11.5.3.2.
|t Parametric Analyses --
|g 11.6.
|t Conclusions --
|t Nomenclature --
|t References.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
0 |
|a Solar air conditioning.
|
700 |
1 |
|
|a Tryfon, Roumpedakis,
|e author.
|
700 |
1 |
|
|a Tzouganatos, Nikolaos,
|e author.
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|c Original
|z 9781138060173
|z 1138060178
|w (DLC) 2018006650
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5508453
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b31804809
|b 200401
|c 181029
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g flu
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 45108f17-0edc-5b8e-a674-444f0339de71
|s f788e1b8-4b30-5a8d-89ce-8bde6af04328
|t 0
|