Table of Contents:
  • Machine generated contents note: 1.1. Global Energy Production and Resources
  • 1.2. Solar Energy
  • 1.2.1. Solar-Generated Electricity
  • 1.2.2. Solar Thermal Energy
  • 1.2.3. Cogeneration of Solar Electricity and Heat
  • 1.2.4. Solar Energy Storage
  • 1.3. Refrigeration Applications
  • 1.3.1. Historical Overview
  • 1.4. Refrigerants
  • 1.4.1. Safety, Toxicity, and Flammability
  • 1.4.2. Regulations and Phase Out
  • 1.4.3. Overview of Common Refrigerants and Their Basic Properties
  • 1.4.4. Optimal Properties of Refrigerants
  • 1.5. Solar Cooling Status
  • Nomenclature
  • References
  • 2.1. Carnot Cycle for Refrigeration
  • 2.1.1. Tutorial on the Carnot Cycle
  • 2.2. Main Components of Mechanical Refrigeration
  • 2.2.1. Compressor
  • 2.2.1.1. Tutorial on the Compressor
  • 2.2.2. Condenser
  • 2.2.2.1. Tutorial on the Condenser
  • 2.2.3. Evaporator
  • 2.2.4. Throttling Device
  • 2.3. Vapor Compression Cycle
  • 2.3.1. Actual Vapor Compression Cycle
  • 2.3.2. Subcooling and Superheating
  • 2.3.3. Multi-Stage and Cascade Vapor Compression Systems
  • 2.3.4. Tutorial on the Vapor Compression Cycle
  • 2.4. Absorption Cooling Cycle
  • 2.4.1. Multiple Stage Absorption Chillers
  • 2.4.2. Energy Considerations for an Absorption Cycle
  • 2.4.3. Exergy Considerations
  • 2.4.4. Tutorial on the Absorption Cycle
  • 2.4.5. Real Cycle
  • 2.5. Adsorption Cooling Cycle
  • 2.5.1. Energy and Exergy Analysis of the Adsorption Cycle
  • 2.6. Desiccant Cooling Cycle
  • 2.6.1. Energy Considerations for Desiccant Cooling
  • 2.7. Organic Rankine Cycles
  • 2.7.1. Energy and Exergy Considerations for the ORC
  • 2.7.1.1. Tutorial on the ORC
  • 2.8. Supercritical CO2 Cycle
  • Nomenclature
  • References
  • 3.1. Non-Concentrating Solar Collectors
  • 3.1.1. Flat-Plate Collectors
  • 3.1.2. Evacuated Tube Collectors
  • 3.1.3. Hybrid PV-Thermal Collectors (PVT)
  • 3.2. Concentrating Solar Collectors
  • 3.2.1. Non-Imaging Concentrating Collectors
  • 3.2.2. Imaging Concentrating Collectors
  • 3.2.2.1. Parabolic Trough Collectors
  • 3.2.2.2. Linear Fresnel Reflectors
  • 3.2.2.3. Central Tower Receivers (CTR)
  • 3.2.2.4. Paraboloidal Dish Reflectors
  • 3.3. Collector Applications
  • 3.3.1. Low-Temperature Solar Thermal Systems
  • 3.3.1.1. Water Heating Systems
  • 3.3.1.2. Space Heating Systems
  • 3.3.1.3. Space Cooling and Refrigeration Systems
  • 3.3.1.4. Water Desalination Systems
  • 3.3.2. Medium- and High-Temperature Solar Thermal Systems
  • 3.3.2.1. Industrial Process Heat Systems
  • 3.3.2.2. Solar Thermal Power Generation Systems
  • 3.3.2.3. Material Processing and Thermochemical Fuel Production Systems
  • Nomenclature
  • References
  • 4.1. Photovoltaic Systems
  • 4.1.1. PV Cell Materials
  • 4.2. Solar Electric Chillers
  • 4.3. Photovoltaic-Thermal Systems
  • Nomenclature
  • References
  • 5.1. Absorption Applications and Performance Data
  • 5.1.1. Working Pairs
  • 5.1.2. Absorption Units
  • 5.1.3. Theoretical Investigations on Absorption Units
  • 5.1.4. Experimental Investigations on Absorption Units
  • 5.1.5. Market Status
  • 5.2. Solar Cooling with Absorption Chillers
  • 5.2.1. Theoretical Investigations on Solar Absorption Cooling
  • 5.2.2. Dynamic Simulations of Solar Absorption Cooling Systems
  • 5.2.3. Performance Data from Experimental Setups
  • 5.2.4. Rethymno Village Hotel Solar Absorption System
  • 5.2.5. Demokritos Research Center Solar Absorption System
  • 5.2.6. Centre for Renewable Energy Sources and Saving Solar Cooling System
  • 5.2.7. ISI Pergine Business Center
  • 5.2.8. GICB Building Solar Cooling Application
  • 5.2.9. Agencia de la Salut Palica
  • 5.2.10. Inditex Arteixo Offices
  • 5.2.11. Technical College for Engineering in Butzbach
  • 5.2.12. Jiangmen Solar Absorption System
  • 5.3. Process Model
  • 5.3.1. Basic Assumptions
  • 5.3.1.1. Generator
  • 5.3.1.2. Absorber
  • 5.3.1.3. Condenser
  • 5.3.1.4. Evaporator
  • 5.3.1.5. Solution Heat Exchanger
  • 5.3.1.6. Heat Transfer Considerations
  • 5.3.1.7. System Pressures
  • 5.3.1.8. Overall Masses
  • Nomenclature
  • References
  • 6.1. Adsorbents
  • 6.1.1. Physical Adsorbents
  • 6.1.2. Chemical Adsorbents
  • 6.1.3. Composite Adsorbents
  • 6.2. Adsorption Refrigerants
  • 6.3. Adsorption Working Pairs
  • 6.3.1. Zeolite-Water
  • 6.3.2. Silica Gel-Water
  • 6.3.3. Activated Carbon-Ammonia
  • 6.3.4. Calcium Chloride-Methanol
  • 6.3.5. Working Pair Comparison Investigations
  • 6.4. Adsorption Chiller Applications
  • 6.5. Solar Cooling with Adsorption Chillers
  • 6.6. Overview of Adsorption Systems Reported in Literature
  • 6.7. Process Model
  • 6.7.1. Basic Assumptions
  • 6.7.2. Adsorption Isotherms and Kinetics
  • 6.7.3. Evaporator
  • 6.7.4. Adsorber
  • 6.7.5. Desorber
  • 6.7.6. Condenser
  • 6.7.7. Performance Indicators
  • 6.8. Model Solution and Results
  • 6.9. Adsorption Cooling Applications
  • 6.9.1. Fahrenheit eZea Case Study
  • 6.9.1.1. Phase 1
  • 6.9.1.2. Phase 2
  • 6.9.1.3. Phase 3
  • 6.9.1.4. Phase 4
  • 6.9.1.5. Performance Data
  • 6.9.2. University of Freiburg Hospital Case
  • 6.9.3. Fraunhofer Institute for Solar Technology-Freiburg, Germany
  • Nomenclature
  • References
  • 7.1. Alternative Cooling Systems
  • 7.1.1. Isothermal Dehumidification
  • 7.1.2. Ejector Cooling
  • 7.1.3. Stirling Cooling
  • 7.1.4. Electrochemical Cooling
  • 7.2. Hybrid Cooling Systems
  • 7.2.1. Desiccant-Brayton Cascade Cycle
  • 7.2.2. Desiccant-Vapor Compression Cycle
  • 7.2.3. Absorption-Rankine Cycle
  • 7.2.4. Ejector-VCC Hybrid System
  • 7.2.5. Ejector-Absorption Cycle
  • 7.2.6. Absorption-Compressor Cycle
  • 7.2.7. Electrochemical-Absorption Cycle
  • 7.2.8. Electro-Adsorption Cycle
  • 7.3. Hybrid Solar Cooling Systems
  • 7.3.1. Solar Ejector-VCC Coupling
  • 7.3.2. Solar Ejector-Rankine Cycle
  • 7.3.3. Solar Ejector-Absorption Cycle
  • 7.3.4. Solar Absorption-Rankine Cycle
  • 7.3.5. Solar Absorption-VCC Coupling
  • 7.3.6. Solar Absorption-Desiccant Cooling Cycle
  • 7.3.7. Solar Adsorption-Ejector
  • 7.3.8. Solar Adsorption-Desiccant Cooling Systems
  • Nomenclature
  • References
  • 8.1. Introduction
  • 8.2. Literature Review
  • 8.3. Case Study: The BioTRIC Trigeneration System
  • 8.4. Conclusions
  • Nomenclature
  • References
  • 9.1. Evaporative Cooling
  • 9.1.1. Direct Evaporative Cooling
  • 9.1.2. Indirect Evaporative Cooling
  • 9.2. Dehumidifiers/Regenerators
  • 9.2.1. Desiccant Wheel
  • 9.2.2. Packed Bed
  • 9.2.3. Spray Towers
  • 9.2.4. Falling Films
  • 9.2.5. Indirect Contact Dehumidifiers/Regenerators
  • 9.3. Solid Desiccant Cooling
  • 9.3.1. Silica Gel
  • 9.3.2. Zeolite
  • 9.3.3. Activated Clay
  • 9.3.4. Investigations on Solid Desiccant Cooling
  • 9.4. Liquid Desiccant Cooling
  • 9.4.1. Investigations on Liquid Desiccant Cooling
  • 9.5. Coupling with Solar Setups
  • 9.5.1. Market Status
  • 9.5.2. Theoretical and Experimental Investigations on Solar Desiccant Cooling
  • 9.6. Solar-Driven Desiccant Cooling Applications
  • 9.6.1. Okopark Hartberg Case
  • 9.6.2. Ineti Research Building
  • 9.6.3. Solar Info Center, Freiburg, Germany
  • Nomenclature
  • References
  • 10.1. Sensible Thermal Energy Storage
  • 10.1.1. Liquid Media
  • 10.1.1.1. Water
  • 10.1.1.2. Mineral Oil Hydrocarbons, Molten Salts, and Liquid Metals
  • 10.1.2. Solid Media
  • 10.1.2.1. Packed Bed Storage
  • 10.1.2.2. Borehole Thermal Energy Storage
  • 10.1.2.3. Particle Suspensions and Storage
  • 10.2. Latent Energy Storage (LTES)
  • 10.2.1. Phase Change Materials Classification and Properties
  • 10.2.2. Containment of Phase Change Materials
  • 10.2.3. Heat Transfer Enhancement Techniques
  • 10.2.3.1. Micro- and Nano-Encapsulation
  • 10.2.3.2. Insertion of Extended Heat-Exchange Surfaces
  • 10.2.3.3. Insertion of High-Conductivity Materials
  • 10.2.3.4. Impregnation of High-Conductivity Porous Structures
  • 10.2.3.5. Cascaded PCM Storage Systems
  • 10.3. Thermochemical Energy Storage (TCS)
  • 10.3.1. Chemical Sorption Processes
  • 10.3.2. Chemical Reaction Processes
  • Nomenclature
  • References
  • 11.1. Introduction
  • 11.2. Overview of Solar Cooling Technologies
  • 11.3. Literature Review of Solar Cooling Economic Evaluation Studies
  • 11.4. Compilation of Cost Data for Solar Cooling Technologies
  • 11.5. Economic Evaluation Case Studies
  • 11.5.1. System Description and Modeling
  • 11.5.1.1. Step 1> Selection of Geographical Location and Building Types, Calculation of Cooling Loads
  • 11.5.1.2. Step 2 Modeling and Sizing of the Solar Cooling Systems
  • 11.5.2. Economic Evaluation Methodology
  • 11.5.3. Economic Evaluation Results
  • 11.5.3.1. Optimization Results
  • 11.5.3.2. Parametric Analyses
  • 11.6. Conclusions
  • Nomenclature
  • References.