|
|
|
|
LEADER |
00000nam a2200000Ii 4500 |
001 |
b3207618 |
005 |
20240627104401.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
181203s2019 mau ob 001 0 eng d |
020 |
|
|
|a 9780128147627
|q (electronic bk.)
|
020 |
|
|
|a 0128147628
|q (electronic bk.)
|
020 |
|
|
|z 9780128147610
|
035 |
|
|
|a (OCoLC)1076873218
|
035 |
|
|
|a (OCoLC)ebc5608228
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d NhCcYME
|d UtOrBLW
|
050 |
|
4 |
|a QA76.9.D343
|b K67 2019
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.312
|
100 |
1 |
|
|a Kotu, Vijay,
|e author.
|0 http://id.loc.gov/authorities/names/no2015057014
|
240 |
1 |
0 |
|a Predictive analytics and data mining
|0 http://id.loc.gov/authorities/names/n2021011452
|
245 |
1 |
0 |
|a Data science :
|b concepts and practice /
|c Vijay Kotu, Bala Deshpande.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Cambridge, MA :
|b Morgan Kaufmann Publishers, an imprint of Elsevier,
|c [2019]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Previous edition under title: Predictive analytics and data mining : concepts and practice with RapidMiner.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.1.
|t AI, Machine Learning, and Data Science --
|g 1.2.
|t What is Data Science? --
|g 1.3.
|t Case for Data Science --
|g 1.4.
|t Data Science Classification --
|g 1.5.
|t Data Science Algorithms --
|g 1.6.
|t Roadmap for This Book --
|t References --
|g 2.1.
|t Prior Knowledge --
|g 2.2.
|t Data Preparation --
|g 2.3.
|t Modeling --
|g 2.4.
|t Application --
|g 2.5.
|t Knowledge --
|t References --
|g 3.1.
|t Objectives of Data Exploration --
|g 3.2.
|t Datasets --
|g 3.3.
|t Descriptive Statistics --
|g 3.4.
|t Data Visualization --
|g 3.5.
|t Roadmap for Data Exploration --
|t References --
|g 4.1.
|t Decision Trees --
|g 4.2.
|t Rule Induction --
|g 4.3.
|t k-Nearest Neighbors --
|g 4.4.
|t Naive Bayesian --
|g 4.5.
|t Artificial Neural Networks --
|g 4.6.
|t Support Vector Machines --
|g 4.7.
|t Ensemble Learners --
|t References --
|g 5.1.
|t Linear Regression --
|g 5.2.
|t Logistic Regression --
|g 5.3.
|t Conclusion --
|t References --
|g 6.1.
|t Mining Association Rules --
|g 6.2.
|t Apriori Algorithm --
|g 6.3.
|t Frequent Pattern-Growth Algorithm --
|g 6.4.
|t Conclusion --
|t References --
|g 7.1.
|t k-Means Clustering --
|g 7.2.
|t DBSCAN Clustering --
|g 7.3.
|t Self-Organizing Maps --
|t References --
|g 8.1.
|t Confusion Matrix --
|g 8.2.
|t ROC and AUC --
|g 8.3.
|t Lift Curves --
|g 8.4.
|t How to Implement --
|g 8.5.
|t Conclusion --
|t References --
|g 9.1.
|t How It Works --
|g 9.2.
|t How to Implement --
|g 9.3.
|t Conclusion --
|t References --
|g 10.1.
|t AI Winter --
|g 10.2.
|t How it Works --
|g 10.3.
|t How to Implement --
|g 10.4.
|t Conclusion --
|t References --
|g 11.1.
|t Recommendation Engine Concepts --
|g 11.2.
|t Collaborative Filtering --
|g 11.3.
|t Content-Based Filtering --
|g 11.4.
|t Hybrid Recommenders --
|g 11.5.
|t Conclusion --
|t References --
|g 12.1.
|t Time Series Decomposition --
|g 12.2.
|t Smoothing Based Methods --
|g 12.3.
|t Regression Based Methods --
|g 12.4.
|t Machine Learning Methods --
|g 12.5.
|t Performance Evaluation --
|g 12.6.
|t Conclusion --
|t References --
|g 13.1.
|t Concepts --
|g 13.2.
|t Distance-Based Outlier Detection --
|g 13.3.
|t Density-Based Outlier Detection --
|g 13.4.
|t Local Outlier Factor --
|g 13.5.
|t Conclusion --
|t References --
|g 14.1.
|t Classifying Feature Selection Methods --
|g 14.2.
|t Principal Component Analysis --
|g 14.3.
|t Information Theory-Based Filtering --
|g 14.4.
|t Chi-Square-Based Filtering --
|g 14.5.
|t Wrapper-Type Feature Selection --
|g 14.6.
|t Conclusion --
|t References --
|g 15.1.
|t User Interface and Terminology --
|g 15.2.
|t Data Importing and Exporting Tools --
|g 15.3.
|t Data Visualization Tools --
|g 15.4.
|t Data Transformation Tools --
|g 15.5.
|t Sampling and Missing Value Tools --
|g 15.6.
|t Optimization Tools --
|g 15.7.
|t Integration with R --
|g 15.8.
|t Conclusion --
|t References.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, Dec. 5, 2018).
|
588 |
0 |
|
|a Vendor-supplied metadata.
|
650 |
|
0 |
|a Data mining.
|0 http://id.loc.gov/authorities/subjects/sh97002073
|
650 |
|
0 |
|a Electronic data processing.
|0 http://id.loc.gov/authorities/subjects/sh85042288
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Electronic data processing.
|2 fast
|0 (OCoLC)fst00906956
|
700 |
1 |
|
|a Deshpande, Balachandre,
|e author.
|0 http://id.loc.gov/authorities/names/no2015042502
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5608228
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b32076186
|b 241001
|c 190114
|
916 |
|
|
|a YBP DDA purchased
|
918 |
|
|
|a .bckstg
|b 2016-12-01
|
919 |
|
|
|a .pcat
|b 2016-12-01
|
998 |
|
|
|a uww
|b 190724
|c m
|d z
|e l
|f eng
|g mau
|h 0
|
999 |
f |
f |
|i ea854641-ebe2-5bd1-bf3b-94a647cf0062
|s ab2a8e16-8cf5-5e57-8cb0-ed88f17b9449
|t 0
|