Applications of differential equations in engineering and mechanics /

Saved in:
Bibliographic Details
Main Author: Chau, K. T. (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)

MARC

LEADER 00000nam a2200000 i 4500
001 b3217507
003 CStclU
005 20190123162842.8
006 m o d
007 cr cnu---unuuu
008 180811s2019 flua ob 001 0 eng
010 |a 2018038769 
020 |a 9780429894350  |q Adobe electronic book 
020 |a 042989435X  |q Adobe electronic book 
020 |a 9780429894343  |q electronic publication 
020 |a 0429894341  |q electronic publication 
020 |a 9781498766982  |q electronic publication 
020 |a 1498766986  |q electronic publication 
020 |a 9780429894336  |q Mobipocket 
020 |a 0429894333  |q Mobipocket 
020 |a 9780429470646  |q electronic book 
020 |a 0429470649  |q electronic book 
020 |z 9780367026431  |q paperback 
035 |a (DLC)ebc5630654 
040 |a NhCcYBP  |c NhCcYBP 
042 |a pcc 
050 4 |a TA347.D45  |b C49 2019 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a TEC  |x 063000  |2 bisacsh 
072 7 |a MAT  |x 007000  |2 bisacsh 
072 7 |a TBC  |2 bicssc 
082 0 0 |a 620.001/535  |2 23 
100 1 |a Chau, K. T.,  |e author. 
245 1 0 |a Applications of differential equations in engineering and mechanics /  |c K.T. Chau. 
264 1 |a Boca Raton, FL :  |b CRC Press, Taylor & Francis Group,  |c [2019] 
300 |a 1 online resource (xxiv, 805 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
505 0 0 |a Machine generated contents note:   |g 1.1.  |t Introduction --   |g 1.2.  |t Beam Bending --   |g 1.2.1.  |t Euler-Bernoulli Beam --   |g 1.2.2.  |t Simply-Supported Beam --   |g 1.2.3.  |t Cantilever Beam --   |g 1.2.4.  |t Cable Load --   |g 1.2.5.  |t Green's Function for Simply-Supported Beams --   |g 1.3.  |t Beam Vibrations --   |g 1.3.1.  |t Simply-Supported Beams --   |g 1.3.2.  |t Orthogonality of the Eigenfunctions --   |g 1.3.3.  |t Cantilever Beam with Suddenly Removed Point Force --   |g 1.3.4.  |t Cantilever Beam with a Tip Lump Mass --   |g 1.3.5.  |t Simply-Supported Beam Subject to an Impulse --   |g 1.3.6.  |t Seismograph as Vibrations of Rigid Beam --   |g 1.4.  |t Rocket/Missile Launch Pad as Beam --   |g 1.5.  |t Beam on Elastic Foundation --   |g 1.5.1.  |t Formulation --   |g 1.5.2.  |t Boundary Conditions --   |g 1.5.3.  |t Infinite Beam under Concentrated Load --   |g 1.6.  |t Euler's Column Buckling --   |g 1.7.  |t Vibrations of Beams under Axial Compression --   |g 1.7.1.  |t Free Vibrations of Cantilever Beams under Axial Compression --   |g 1.7.2.  |t Orthogonal Approximation --   |g 1.7.3.  |t Rigorous Approach --   |g 1.8.  |t Timoshenko Beam Theory --   |g 1.8.1.  |t Variational Formulation --   |g 1.8.2.  |t Static Solution for Timoshenko Beam --   |g 1.8.3.  |t Free Vibrations of Timoshenko Beams --   |g 1.8.4.  |t Free Vibrations of Simply-Supported Timoshenko Beams --   |g 1.8.5.  |t Free Vibrations of Cantilever Timoshenko Beams --   |g 1.8.6.  |t Free Vibrations of Fixed End Timoshenko Beams --   |g 1.9.  |t Summary and Further Reading --   |g 1.10.  |t Problems --   |g 2.1.  |t Introduction --   |g 2.2.  |t Kirchhoff Plate Theory --   |g 2.2.1.  |t Equilibrium Equations --   |g 2.2.2.  |t Forces and Moments --   |g 2.2.3.  |t Governing Equations --   |g 2.2.4.  |t Edge Conditions --   |g 2.3.  |t Simply-Supported Plates --   |g 2.3.1.  |t Navier's Solution --   |g 2.3.2.  |t Levy's Solution --   |g 2.4.  |t Clamped Rectangular Plates --   |g 2.4.1.  |t Galerkin Method --   |g 2.4.2.  |t Approximation for Clamped Plates --   |g 2.5.  |t Deflection of Circular Plates --   |g 2.5.1.  |t Clamped Plate with Uniform Load --   |g 2.5.2.  |t Clamped Plate with Patch Load --   |g 2.5.3.  |t Plates under Central Point Force --   |g 2.6.  |t Buckling of Plates --   |g 2.7.  |t Bending of Anisotropic Plates --   |g 2.8.  |t Plate on Elastic Foundation --   |g 2.9.  |t Plate Vibrations --   |g 2.9.1.  |t Free Vibrations --   |g 2.9.2.  |t Forced Vibrations --   |g 2.9.3.  |t Approximation by Rayleigh Quotient --   |g 2.9.4.  |t Strain Energy of Plates --   |g 2.9.5.  |t Rayleigh-Ritz Method --   |g 2.10.  |t Vibrations of Circular Plates --   |g 2.11.  |t Hertz Problem of Circular Plate under Point Load --   |g 2.11.1.  |t Series Solution --   |g 2.11.2.  |t Variational Principle --   |g 2.11.3.  |t Rayleigh-Ritz Method --   |g 2.11.4.  |t General Solution in Kelvin Functions --   |g 2.11.5.  |t Matching of Boundary Condition --   |g 2.11.6.  |t Wyman's Solution --   |g 2.12.  |t Summary and Further Reading --   |g 2.13.  |t Problems --   |g 3.1.  |t Introduction --   |g 3.2.  |t Stresses, Forces, and Moments in Shells --   |g 3.3.  |t Membrane Theory for Axisymmetric Shells --   |g 3.3.1.  |t Dome under Concentrated Apex Load --   |g 3.3.2.  |t Truncated Dome under Ring Load --   |g 3.3.3.  |t Compatibility at Ring Foundation --   |g 3.4.  |t Shell of Revolution under Uniform Load --   |g 3.4.1.  |t Spherical Shell with Opening --   |g 3.4.2.  |t Spherical Fluid Container --   |g 3.4.3.  |t Conical Shells --   |g 3.5.  |t Membrane Theory for Cylindrical Shells --   |g 3.5.1.  |t Governing Equations --   |g 3.5.2.  |t General Solutions for Axisymmetric Case --   |g 3.5.3.  |t Simply-Supported Tube --   |g 3.5.4.  |t Circular Tube under Dead Load --   |g 3.5.5.  |t Membrane Theory versus Beam Theory --   |g 3.5.6.  |t Pipe Subject to Edge Load --   |g 3.5.7.  |t Simply-Supported Cylindrical Shell Roof --   |g 3.6.  |t Bending Theory of Cylindrical Shells --   |g 3.6.1.  |t Governing Equation for Axisymmetric Cylindrical Shells --   |g 3.6.2.  |t Deformation Kinematics --   |g 3.6.3.  |t Shell Bending Theory versus Beam on Elastic Foundation --   |g 3.6.4.  |t General Solutions --   |g 3.7.  |t Circular Pipe --   |g 3.7.1.  |t Semi-Infinite Pipe Subject to End Force --   |g 3.7.2.  |t Decay of Edge Disturbance --   |g 3.7.3.  |t Infinite Pipes under Ring Load --   |g 3.7.4.  |t Effective Length --   |g 3.8.  |t Buckling of Cylindrical Shell under Axial Load --   |g 3.9.  |t Bending Theory for Shell of Revolution --   |g 3.9.1.  |t Force and Moment Equilibrium --   |g 3.9.2.  |t Hooke's Law --   |g 3.9.3.  |t Change of Curvature --   |g 3.9.4.  |t Reissner Formulation --   |g 3.10.  |t Spherical Shell of Constant Thickness --   |g 3.10.1.  |t Solution in Terms of Hypergeometric Functions --   |g 3.10.2.  |t Superposition for Various Boundary Conditions --   |g 3.11.  |t Thin Spherical Shell --   |g 3.11.1.  |t Geckeler-Staerman Approximation --   |g 3.11.2.  |t Hetenyi Approximation --   |g 3.12.  |t Symmetrical Bending of Thin Shallow Spherical Shell --   |g 3.12.1.  |t Reissner Formulation --   |g 3.12.2.  |t Governing Equations for Negligible Self-Weight --   |g 3.12.3.  |t Solution in Kelvin Functions --   |g 3.13.  |t Bending of Cylindrical Shell --   |g 3.13.1.  |t Governing Equations --   |g 3.13.2.  |t Vlasov's Stress Function --   |g 3.13.3.  |t Cylindrical Roof Shells --   |g 3.13.4.  |t Particular Solution --   |g 3.13.5.  |t Homogeneous Solution --   |g 3.13.6.  |t General Solution --   |g 3.13.7.  |t Vertical Load on Shell Surface --   |g 3.14.  |t Summary and Further Reading --   |g 3.15.  |t Problems --   |g 4.1.  |t Introduction --   |g 4.2.  |t Static Deflection versus Natural Vibration --   |g 4.3.  |t Single-Story Building --   |g 4.4.  |t Damped and Undamped Responses --   |g 4.4.1.  |t Undamped Responses --   |g 4.4.2.  |t Damped-Free Responses --   |g 4.4.3.  |t Damping Ratio by Hammer Test --   |g 4.4.4.  |t Damped Forced Responses --   |g 4.5.  |t Duhamel Integral for General Ground Motions --   |g 4.5.1.  |t Formulation of Equation of Motion --   |g 4.5.2.  |t Duhamel Integral --   |g 4.6.  |t Response Spectrum --   |g 4.6.1.  |t Pseudo-Response Spectrum --   |g 4.6.2.  |t Nonlinear Response Spectrum --   |g 4.7.  |t Multiple-Story Buildings --   |g 4.8.  |t Modal Analysis --   |g 4.8.1.  |t Free Vibrations --   |g 4.8.2.  |t Decoupling of the Undamped Dynamic System --   |g 4.8.3.  |t Decoupling of the Damped Dynamic System --   |g 4.8.4.  |t Rayleigh Damping --   |g 4.8.5.  |t Caughey and Liu-Gorman Proportional Damping --   |g 4.8.6.  |t Rayleigh Quotient Technique --   |g 4.8.7.  |t Response Spectrum Method for MDOF System --   |g 4.9.  |t Summary and Further Reading --   |g 4.10.  |t Problems --   |g 5.1.  |t Introduction --   |g 5.2.  |t Vibrations of Hanging Chains --   |g 5.3.  |t Catenary --   |g 5.4.  |t Inverted Catenary and Arch --   |g 5.5.  |t Stone Arches --   |g 5.5.1.  |t Formulation of Stone Arches --   |g 5.5.2.  |t Inglis Solution --   |g 5.6.  |t Cable Suspension Bridge --   |g 5.7.  |t Cable-Stay Bridge --   |g 5.8.  |t Vibrations of Cable Suspension Bridge --   |g 5.8.1.  |t Governing Equations for Flexible Deck --   |g 5.8.2.  |t Symmetric Modes --   |g 5.8.3.  |t Anti-Symmetric Modes --   |g 5.8.4.  |t Suspension Bridge with Stiffened Truss --   |g 5.9.  |t Summary and Further Reading --   |g 5.10.  |t Problems --   |g 6.1.  |t Introduction --   |g 6.1.1.  |t Column Buckling --   |g 6.1.2.  |t Plate Buckling --   |g 6.1.3.  |t Shell Buckling --   |g 6.2.  |t Lagrangian or Green's Strain --   |g 6.3.  |t Euler-Bernoulli Beam --   |g 6.3.1.  |t Strain Energy Function --   |g 6.3.2.  |t Hamiltonian Principle --   |g 6.3.3.  |t Calculus of Variations --   |g 6.3.4.  |t Applied Force versus Applied Displacement --   |g 6.4.  |t Static Buckling Theory of Beam --   |g 6.5.  |t Linear Dynamic Stability of Static States --   |g 6.5.1.  |t Perturbation Method --   |g 6.5.2.  |t Stability of Straight State --   |g 6.5.3.  |t Stability of Buckled States --   |g 6.6.  |t Nonlinear Dynamic Stability --   |g 6.6.1.  |t Undamped Motions --   |g 6.6.2.  |t Damped Motions --   |g 6.7.  |t Multi-Time Perturbation and Stability --   |g 6.8.  |t Governing Equations of Crooked Beams --   |g 6.8.1.  |t Lagrangian Strain for Crooked Beams --   |g 6.8.2.  |t Variational Principle for Crooked Beams --   |g 6.9.  |t Snap-Through Buckling of Elastic Arches --   |g 6.9.1.  |t Static Solution under Pressure --   |g 6.9.2.  |t Linear Dynamic Stability --   |g 6.9.3.  |t Transitions of Snap-Through Buckling --   |g 6.9.4.  |t Linear Dynamic Stability for Unsymmetric State --   |g 6.10.  |t Summary and Further Reading --   |g 6.11.  |t Problems --   |g 7.1.  |t Introduction --   |g 7.2.  |t Error Function --   |g 7.2.1.  |t Definition --   |g 7.2.2.  |t Relation to Normal Distribution --   |g 7.2.3.  |t Complementary Error Function --   |g 7.2.4.  |t Some Results of Error Function --   |g 7.3.  |t Diffusion of Pollutants in River --   |g 7.4.  |t Ogata and Banks Solution --   |g 7.5.  |t Solution for Decaying Pollutants --   |g 7.6.  |t Dispersion of Decaying Substances --   |g 7.7.  |t Taylor's Point Source Solution --   |g 7.7.1.  |t Taylor's Approach --   |g 7.7.2.  |t Taylor's Solution by Dimensional Analysis --   |g 7.8.  |t Decaying Pollutant in Flowing Fluid --   |g 7.8.1.  |t Point Source Solution --   |g 7.8.2.  |t Continuous Source Solution --   |g 7.9.  |t Diffusion in Higher Dimension --   |g 7.9.1.  |t Two-Dimensional Point Source Solution --   |g 7.9.2.  |t Three-Dimensional Point Source Solution --   |g 7.9.3.  |t Two-Dimensional Line Source --   |g 7.10.  |t Summary and Further Reading --   |g 7.11.  |t Problems --   |g 8.1.  |t Introduction --   |g 8.2.  |t Coriolis Force Due to Rotation --   |g 8.2.1.  |t Coriolis Force for High Altitude --   |g 8.2.2.  |t Coriolis Force for All Altitudes --   |g 8.3.  |t Hydrodynamic Equations for Geophysical Flows --   |g 8.3.1.  |t Continuity Condition --   |g 8.3.2.  |t Momentum Equations --   |g 8.3.3.  |t Mass Conservation --   |g 8.3.4.  |t Constitutive Law --   |g 8.3.5.  |t Energy Equation --   |g 8.3.6.  |t Equation of State --   |g 8.4.  |t System of Equations for Geophysical Flows --   |g 8.4.1.  |t Consideration of Scales --   |g 8.4.2.  |t Governing Equations --   |g 8.4.3.  |t Rossby, Ekman and Reynolds Numbers --   |g 8.5.  |t Storm Surges --   |g 8.5.1.  |t Storm Surges by Inverse Barometer Effect --   |g 8.5.2.  |t Storm Surges with Moving Disturbance --   |g 8.5.3.  |t Wind-Induced Storm Surges --   |g 8.5.4.  |t Current Profile --   |g 8.6.  |t Ekman Transport --   |g 8.6.1.  |t Ekman Transport with No Internal Currents --   |g 8.6.2.  |t Ekman Transport with Internal Currents --   |g 8.7.  |t Geostrophic Flows --   |g 8.7.1.  |t Taylor-Proudman Theorem --   |g 8.7.2.  |t Homogeneous Geostrophic Flows --   |g 8.8.  |t 2-D Shallow Water Equations --   |g 8.9.  |t Vorticity and Tornado Dynamics --   |g 8.9.1.  |t Helmholtz Vorticity Equation --   |g 8.9.2.  |t Conservation of Angular Momentum --   |g 8.9.3.  |t Vorticity in Tornadoes --   |g 8.9.4.  |t Potential Vortex Model --   |g 8.9.5.  |t Rankine Vortex Model --   |g 8.9.6.  |t Burgers-Rott Vortex Model --   |g 8.9.7.  |t Oseen-Lamb Vortex Model -- 
505 0 0 |a Contents note continued:   |g 8.9.8.  |t Sullivan Vortex Model --   |g 8.10.  |t Summary and Further Reading --   |g 8.17.  |t Problems --   |g 9.1.  |t Introduction --   |g 9.2.  |t Nonlinear Transport and Shocks --   |g 9.3.  |t Dispersive Waves --   |g 9.4.  |t Shock Waves in Traffic Flow --   |g 9.5.  |t KdV Equation --   |g 9.5.1.  |t Formulation of KdV --   |g 9.5.2.  |t Scale Invariance --   |g 9.5.3.  |t Physical Interpretation of KdV --   |g 9.5.4.  |t Dispersion versus Nonlinearity --   |g 9.5.5.  |t Soliton Solution --   |g 9.6.  |t Hirota's Direct Method --   |g 9.6.1.  |t Bilinear Form of KdV Equation --   |g 9.6.2.  |t One-Soliton Solution --   |g 9.6.3.  |t Two-Soliton Solution --   |g 9.6.4.  |t N-Soliton Solution --   |g 9.6.5.  |t Hirota's D-Operator --   |g 9.7.  |t KdV Equation and Other Nonlinear Equations --   |g 9.7.1.  |t KdV Equation and mKdV Equation --   |g 9.7.2.  |t KdV Equation and Boussinesq Equation --   |g 9.7.3.  |t KdV Equation and Nonlinear Schrodinger Equation --   |g 9.7.4.  |t KdV Equation and First Painleve Equation --   |g 9.7.5.  |t mKdV Equation and Second Painleve Equation --   |g 9.8.  |t Conservation Laws of KdV --   |g 9.9.  |t Nonlinear SchrOdinger Equation --   |g 9.9.1.  |t mKdV Equation and NLSE --   |g 9.9.2.  |t Bright Soliton --   |g 9.9.3.  |t Dark Soliton --   |g 9.9.4.  |t Rogue Waves in Oceans --   |g 9.10.  |t Other Nonlinear Wave Equations --   |g 9.11.  |t Summary and Further Reading --   |g 9.12.  |t Problems --   |g 10.1.  |t Introduction --   |g 10.2.  |t Microscopic Maxwell Equations --   |g 10.2.1.  |t Gauss Law for Electric Field --   |g 10.2.2.  |t Gauss Law for Magnetism --   |g 10.2.3.  |t Maxwell-Faraday Law --   |g 10.2.4.  |t Ampere Circuital Law (with Maxwell Correction) --   |g 10.2.5.  |t Dual Symmetry of Electromagnetic Waves in Vacuum Space --   |g 10.3.  |t Integral versus Differential Forms --   |g 10.4.  |t Macroscopic Maxwell Equations --   |g 10.5.  |t Constitutive Relation and Ohm's Law --   |g 10.6.  |t Electromagnetic Waves in Vacuum --   |g 10.7.  |t Maxwell Equations in Gauss Unit --   |g 10.8.  |t Boundary Conditions --   |g 10.9.  |t Maxwell's Vector and Scalar Potentials --   |g 10.10.  |t Gauge Freedom --   |g 10.10.1.  |t Coulomb Gauge --   |g 10.10.2.  |t Lorenz Gauge --   |g 10.10.3.  |t Aharonov-Bohm Effect (Physical Meaning of Wave Potentials) --   |g 10.11.  |t Solutions of Maxwell Equations: Jefimenko's Equations --   |g 10.11.1.  |t Gradient Identity of Jefimenko --   |g 10.11.2.  |t Curl Identity of Jefimenko --   |g 10.12.  |t Electromagnetic Waves in Materials --   |g 10.13.  |t Mathematical Theory for Lorenz Gauge --   |g 10.13.1.  |t Hertz Vector for Electric Field --   |g 10.13.2.  |t Gauge Invariance of Hertz Vector --   |g 10.13.3.  |t Hertz Vector for Magnetic Polarization --   |g 10.13.4.  |t Debye Potential Function for Transverse Magnetic Waves --   |g 10.13.5.  |t Debye Potential Function for Transverse Electric Waves --   |g 10.14.  |t Duality and Symmetry --   |g 10.15.  |t Mathematical Theory for Coulomb Gauge --   |g 10.15.1.  |t Scalar and Vector Potentials --   |g 10.15.2.  |t Transverse Waves or Radiation Gauge --   |g 10.15.3.  |t General Solution for Poisson Equation --   |g 10.15.4.  |t Single-and Double-Layer Potentials --   |g 10.16.  |t Kirchhoff Integral Formula for Waves --   |g 10.17.  |t Summary and Further Reading --   |g 10.18.  |t Problems --   |g 11.1.  |t Introduction --   |g 11.2.  |t Black Body Radiation and Quantized Energy --   |g 11.3.  |t Schrodinger Equation --   |g 11.3.1.  |t One-Dimensional Schrodinger Equation --   |g 11.3.2.  |t Three-Dimensional Schrodinger Equation --   |g 11.3.3.  |t Wave Functions of Particles --   |g 11.3.4.  |t Expectation Values --   |g 11.3.5.  |t Stationary State of Energy E --   |g 11.4.  |t Operators and Expectation Values --   |g 11.5.  |t Classical Mechanics versus Quantum Mechanics --   |g 11.6.  |t Hydrogen-Like Atom Model --   |g 11.6.1.  |t Schrodinger Equation in Polar Form --   |g 11.6.2.  |t Separation of Variables --   |g 11.6.3.  |t Constraints Imposed by Wavefunctions --   |g 11.6.4.  |t Laguerre and Associated Laguerre Polynomials --   |g 11.6.5.  |t Orthogonality of Associated Laguerre Polynomials --   |g 11.6.6.  |t Admissible Form of the Wavefunctions --   |g 11.7.  |t Electron Spins --   |g 11.8.  |t Schrodinger Equation for General Atoms --   |g 11.9.  |t Radiative Transitions from Atoms --   |g 11.10.  |t Summary and Further Reading --   |g 11.11.  |t Problems --   |g 12.1.  |t Introduction --   |g 12.2.  |t Equation of Motion for a Rigid Mass --   |g 12.3.  |t Mass under Gravitational Pull --   |g 12.4.  |t Orbital Equations for an Artificial Satellite --   |g 12.5.  |t Orbital Equations in Polar Form --   |g 12.6.  |t Kepler's 1st Law --   |g 12.7.  |t First Escape Velocity (Orbital Speed) --   |g 12.8.  |t Second Escape Velocity (from Earth) --   |g 12.9.  |t Third Escape Velocity (from Our Solar System) --   |g 12.10.  |t Travel to the Moon --   |g 12.11.  |t Kepler's Second Law --   |g 12.12.  |t Kepler's Third Law (Newton's Law) --   |g 12.13.  |t Energy in an Elliptic Orbit --   |g 12.14.  |t Interplanetary Travel --   |g 12.14.1.  |t Hohmann Transfer Orbit --   |g 12.14.2.  |t Launching Time Window --   |g 12.15.  |t Striking Speed of Meteors on Earth --   |g 12.16.  |t Precession of the Perihelion of Mercury --   |g 12.16.1.  |t Schwarzschild Metric for Curved Space-Time --   |g 12.16.2.  |t Energy Term Due to Relativity --   |g 12.16.3.  |t Contribution to Perihelion Precession --   |g 12.17.  |t Motion near the Earth's Surface --   |g 12.18.  |t Rocket and Missile Problem --   |g 12.19.  |t Dynamic of Atmospheric Re-Entry --   |g 12.19.1.  |t Formulation --   |g 12.19.2.  |t Yaroshevsky Solution --   |g 12.20.  |t Restricted Problem of Three Bodies --   |g 12.20.1.  |t Formulation of the Three-Body Problem --   |g 12.20.2.  |t Triangular Lagrangian Points --   |g 12.20.3.  |t Three Collinear Lagrangian Points --   |g 12.20.4.  |t Approximate Solution to Lagrange's Quintic Equation --   |g 12.21.  |t Summary and Further Reading --   |g 12.22.  |t Problems --   |g 13.1.  |t Introduction --   |g 13.2.  |t Papkovitch-Neuber Potentials for Axisymmetric Elasticity --   |g 13.3.  |t Mixed Boundary Value Problems as Potential Problems --   |g 13.4.  |t Formulation of Dual Integral Equations --   |g 13.5.  |t Penny-Shaped Crack Problem --   |g 13.5.1.  |t Reduction of Dual Integral Equations to Abel Integral --   |g 13.5.2.  |t Displacement Field Due to Uniform Pressure --   |g 13.5.3.  |t Energy Change Due to Crack Presence --   |g 13.6.  |t Papkovitch-Neuber Potentials for Plane Elasticity --   |g 13.7.  |t Formulation of Dual Integral Equations --   |g 13.8.  |t Griffith Crack Problem --   |g 13.8.1.  |t Reduction of Dual Integral Equations to Abel Integral --   |g 13.8.2.  |t Solutions --   |g 13.9.  |t Fracture Dynamics in Wave Equations --   |g 13.10.  |t Reduction of Wave to Harmonic Problem by Galilean Transform --   |g 13.11.  |t Mode I Asymptotic Field at Moving Crack Tip --   |g 13.11.1.  |t Eigenvalue Problem --   |g 13.11.2.  |t Asymptotic Fields --   |g 13.12.  |t Mode II Asymptotic Field at Moving Crack Tip --   |g 13.12.1.  |t Eigenvalue Problem --   |g 13.12.2.  |t Asymptotic Fields --   |g 13.13.  |t Mode III Asymptotic Field at Moving Crack Tip --   |g 13.13.1.  |t Eigenvalue Problem --   |g 13.13.2.  |t Asymptotic Fields --   |g 13.14.  |t Asymptotic Field of Transient Crack Growth --   |g 13.15.  |t Crack Growth with Intersonic Speed --   |g 13.15.1.  |t Formulation --   |g 13.15.2.  |t Mode I --   |g 13.15.3.  |t Mode II --   |g 13.15.4.  |t Asymptotic Field for Mode II Crack --   |g 13.16.  |t Summary and Further Reading --   |g 13.17.  |t Problems --   |t References. 
533 |a Electronic reproduction.  |b Ann Arbor, MI  |n Available via World Wide Web. 
545 0 |a Professor K.T. Chau is Chair Professor of Geotechnical Engineering and former Associate Dean (Research and Development) at the Hong Kong Polytechnic University, where he was awarded the "Teaching Excellence Award in 2012/2013" by the Department of Civil and Environmental Engineering. He is a Fellow of the Hong Kong Institution of Engineers and past President of the Hong Kong Society of Theoretical and Applied Mechanics. He is the Chairman of the Elasticity Committee of the Engineering Mechanics Division of ASCE, the Chairman of the TC103 Technical Committee of Numerical Methods on Geomechanics of International Society of Soil Mechanics and Geotechnical Engineering and the Chairman of the Geomechanics Committee of the Applied Mechanics Division of ASME. He is also the Vice President of the Hong Kong Institute of Science. His book "Analytic Methods in Geomechanics" was published in 2013 by CRC Press, and it is the first book of its kind, covering, continuum mechanics, tensor analysis, 2-D elasticity, 3-D elasticity, plasticity, fracture mechanics, viscoelasticity, poroelasticity, and dynamics and waves in geomaterials. Since 2012, he has been teaching subjects called "Engineering Analysis" and "Engineering Analysis & Computation" at PolyU. They are mainly using differential equations in engineering analysis. 
588 |a Description based on online resource; title from digital title page (viewed on January 11, 2019). 
650 0 |a Engineering mathematics. 
650 0 |a Differential equations. 
710 2 |a ProQuest (Firm) 
776 0 8 |i Print version:  |a Chau, K.T.  |t Applications of differential equations in engineering and mechanics.  |d Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T & F Informa, plc, [2019]  |z 9780367026431  |w (DLC) 2018036501 
856 4 0 |u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5630654  |z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)  |t 0 
907 |a .b32175073  |b 240625  |c 190311 
998 |a uww  |b    |c m  |d z   |e l  |f eng  |g flu  |h 0 
917 |a YBP DDA 
919 |a .ulebk  |b 2017-02-14 
999 f f |i 579059e9-72c2-5489-8214-eea78c344083  |s 272f1df5-60a6-5d4e-bc20-7f4a9d09e6a5  |t 0