|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
b3264500 |
003 |
CStclU |
005 |
20190425115351.5 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
190408t20192019nju ob 001 0 eng |
010 |
|
|
|a 2019016514
|
020 |
|
|
|a 9781119544210
|q electronic book
|
020 |
|
|
|a 1119544211
|q electronic book
|
020 |
|
|
|a 9781119544227
|q electronic book
|
020 |
|
|
|a 111954422X
|q electronic book
|
020 |
|
|
|a 9781119544203
|q electronic book
|
020 |
|
|
|a 1119544203
|q electronic book
|
020 |
|
|
|z 9781119544197
|q hardcover
|
020 |
|
|
|z 111954419X
|q hardcover
|
035 |
|
|
|a (DLC)ebc5741231
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
042 |
|
|
|a pcc
|
050 |
|
4 |
|a QA248.5
|b .C43 2019
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
0 |
|a 511.3/223
|2 23
|
100 |
1 |
|
|a Chaira, Tamalika,
|e author.
|
245 |
1 |
0 |
|a Fuzzy set and its extension :
|b the intuitionistic fuzzy set /
|c Tamalika Chaira, Midnapore (West), West Bengal, India.
|
264 |
|
1 |
|a Hoboken, NJ :
|b John Wiley & Sons, Inc.,
|c 2019.
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b n
|2 rdamedia
|
338 |
|
|
|a online resource
|b nc
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Fuzzy/Intuitionistic Fuzzy Set Theory --
|g 1.1.
|t Introduction to Fuzzy Set --
|g 1.2.
|t Mathematical Representation of Fuzzy Sets --
|g 1.3.
|t Membership Function --
|g 1.4.
|t Fuzzy Relations --
|g 1.5.
|t Projection --
|g 1.6.
|t Composition of Fuzzy Relation --
|g 1.7.
|t Fuzzy Binary Relation --
|g 1.8.
|t Transitive Closure of Fuzzy Binary Relation --
|g 1.9.
|t Fuzzy Equivalence Relation --
|g 1.10.
|t Intuitionistic Fuzzy Set --
|g 1.11.
|t Construction of Intuitionistic Fuzzy Set --
|g 1.12.
|t Intuitionistic Fuzzy Relations --
|g 1.13.
|t Composition of Intuitionistic Fuzzy Relation --
|g 1.13.1.
|t Composition of IFR Using T-norms and T-conorms --
|g 1.14.
|t Intuitionistic Fuzzy Binary Relation --
|g 1.14.1.
|t Reflexive Property --
|g 1.14.2.
|t Symmetric Property --
|g 1.14.3.
|t Transitive Property --
|g 1.15.
|t Summary --
|t References --
|g 2.
|t Playing with Fuzzy/Intuitionistic Fuzzy Numbers --
|g 2.1.
|t Introduction --
|g 2.2.
|t Fuzzy Numbers --
|g 2.3.
|t Fuzzy Intervals --
|g 2.4.
|t Zadeh's Extension Principle --
|g 2.4.1.
|t Extension Principle for Two Variables --
|g 2.5.
|t Fuzzy Numbers with a-Levels --
|g 2.6.
|t Operations on Fuzzy Numbers with Intervals --
|g 2.7.
|t Operations with Fuzzy Numbers based on a-Levels --
|g 2.8.
|t Operations on Fuzzy Numbers Using Extension Principle --
|g 2.8.1.
|t Operations --
|g 2.8.2.
|t Examples on Operations of Fuzzy Numbers Using Extension Principle --
|g 2.9.
|t L-R Representation of Fuzzy Numbers --
|g 2.10.
|t Intuitionistic Fuzzy Numbers --
|g 2.11.
|t Triangular Intuitionistic Fuzzy Number --
|g 2.12.
|t Operations Using Triangular Intuitionistic Fuzzy Numbers --
|g 2.13.
|t Trapezoidal Intuitionistic Fuzzy Numbers --
|g 2.14.
|t Cut Set of Intuitionistic Fuzzy Number --
|g 2.15.
|t Distances Between Two Intuitionistic Fuzzy Numbers --
|g 2.16.
|t Summary --
|t References --
|g 3.
|t Similarity Measures and Measures of Fuzziness --
|g 3.1.
|t Introduction --
|g 3.2.
|t Distance and Similarity Measures --
|g 3.2.1.
|t Distance Measure --
|g 3.2.2.
|t Similarity Measure --
|g 3.3.
|t Types of Distance Measure Between Fuzzy Sets --
|g 3.4.
|t Types of Similarity Measures Between Fuzzy Sets --
|g 3.5.
|t Generalized Fuzzy Number --
|g 3.6.
|t Similarity Measures Between Two Fuzzy Numbers --
|g 3.7.
|t Inclusion Measure --
|g 3.8.
|t Measures of Fuzziness --
|g 3.8.1.
|t Index of Fuzziness --
|g 3.8.2.
|t Yager's Measure --
|g 3.8.3.
|t Fuzzy Entropy --
|g 3.9.
|t Intuitionistic Fuzzy Distance and Similarity Measures --
|g 3.10.
|t Intuitionistic Fuzzy Entropy --
|g 3.11.
|t Different Types of Intuitionistic Fuzzy Entropies --
|g 3.12.
|t Summary --
|t References --
|g 4.
|t Fuzzy/Intuitionistic Fuzzy Measures and Fuzzy Integrals --
|g 4.1.
|t Introduction --
|g 4.2.
|t Definition of Fuzzy Measure --
|g 4.3.
|t Fuzzy Measures --
|g 4.3.1.
|t Sugeno A-Fuzzy Measure --
|g 4.3.2.
|t Belief Measure --
|g 4.3.3.
|t Plausibility Measure --
|g 4.3.4.
|t Possibility Measure and Necessity Measure --
|g 4.3.4.1.
|t Possibility Measure --
|g 4.3.4.2.
|t Necessity Measure --
|g 4.4.
|t Fuzzy Integrals --
|g 4.4.1.
|t Sugeno Integral --
|g 4.4.2.
|t Choquet Integral --
|g 4.4.3.
|t Sipos Integral --
|g 4.5.
|t Intuitionistic Fuzzy Integral --
|g 4.5.1.
|t Intuitionistic Fuzzy Choquet Integral --
|g 4.6.
|t Summary --
|t References --
|g 5.
|t Operations on Fuzzy/Intuitionistic Fuzzy Sets and Application in Decision Making --
|g 5.1.
|t Introduction --
|g 5.2.
|t Fuzzy Operations --
|g 5.2.1.
|t Fuzzy Union --
|g 5.2.2.
|t Fuzzy Intersection --
|g 5.2.3.
|t Fuzzy Complements --
|g 5.2.4.
|t Algebraic Product --
|g 5.2.5.
|t Algebraic Sum --
|g 5.2.6.
|t Simple Difference --
|g 5.2.7.
|t Bounded Sum --
|g 5.2.8.
|t Bounded Difference --
|g 5.2.9.
|t Bounded Product --
|g 5.3.
|t Fuzzy Other Operators: Fuzzy T-Norms and T-Conorms --
|g 5.3.1.
|t Definition of T-Norm --
|g 5.3.2.
|t Definition of T-Conorm --
|g 5.4.
|t Implication Operator --
|g 5.5.
|t Aggregation Operator with Application in Decision Making --
|g 5.5.1.
|t Fuzzy Weighted Averaging Operator (FWA) --
|g 5.5.2.
|t Fuzzy Ordered Weighted Averaging Operator (FOWA) --
|g 5.5.3.
|t Fuzzy Generalized Ordered Weighted Averaging Operator (GOWA) --
|g 5.5.4.
|t Fuzzy Hybrid Averaging Operator (FHA) --
|g 5.5.5.
|t Fuzzy Quasi-Arithmetic Weighted Averaging Operator --
|g 5.5.6.
|t Induced Generalized Fuzzy Averaging Operator (IGOWA) --
|g 5.5.7.
|t Choquet Aggregation Operator --
|g 5.5.8.
|t Induced Choquet Ordered Aggregation Operator --
|g 5.6.
|t Intuitionistic Fuzzy Operators --
|g 5.7.
|t Intuitionistic Fuzzy Aggregation Operator --
|g 5.7.1.
|t Generalized Intuitionistic Fuzzy Aggregation Operator --
|g 5.7.2.
|t Generalized Intuitionistic Fuzzy Ordered Weighting Operator (GIFOWA) --
|g 5.7.3.
|t Generalized Intuitionistic Fuzzy Hybrid Operator --
|g 5.7.4.
|t Intuitionistic Fuzzy Weighted Geometric Operator (IFWG) --
|g 5.7.5.
|t Intuitionistic Fuzzy Ordered Weighted Geometric Operator --
|g 5.7.6.
|t Induced Generalized Intuitionistic Fuzzy Ordered Averaging Operator --
|g 5.7.7.
|t Intuitionistic Fuzzy Choquet Integral Operator --
|g 5.7.8.
|t Induced Intuitionistic Fuzzy Choquet Integral Operator --
|g 5.8.
|t Example on Decision-making Problems --
|g 5.9.
|t Summary --
|t References --
|g 6.
|t Fuzzy Linear Equations --
|g 6.1.
|t Introduction --
|g 6.2.
|t Fuzzy Linear Equation --
|g 6.2.1.
|t Problem of Finding an Unknown Number --
|g 6.3.
|t Solving Linear Equation Using Cramer's Rule --
|g 6.4.
|t Inverse of a Fuzzy Matrix --
|g 6.5.
|t Summary --
|t References --
|g 7.
|t Fuzzy Matrices and Determinants --
|g 7.1.
|t Basic Matrix Theory --
|g 7.1.1.
|t Matrix Addition --
|g 7.1.2.
|t Matrix Multiplication --
|g 7.1.3.
|t Transpose of a Matrix --
|g 7.2.
|t Fuzzy Matrices --
|g 7.2.1.
|t Matrix Addition, Multiplication, Max, Min Operations --
|g 7.2.2.
|t Identity Matrix --
|g 7.3.
|t Determinant of a Square Fuzzy Matrix --
|g 7.3.1.
|t Examples of Fuzzy Determinants --
|g 7.4.
|t Adjoint of a Square Fuzzy Matrix --
|g 7.4.1.
|t Few Proposition of Adjoint of Fuzzy Matrices --
|g 7.5.
|t Properties of Reflexive Matrices --
|g 7.6.
|t Generalized Inverse of a Fuzzy Matrix --
|g 7.7.
|t Intuitionistic Fuzzy Matrix --
|g 7.7.1.
|t Identity Matrix --
|g 7.7.2.
|t Null Matrix --
|g 7.7.3.
|t Generalized Inverse of Intuitionistic Fuzzy Matrix --
|g 7.8.
|t Summary --
|t References --
|g 8.
|t Fuzzy Subgroups --
|g 8.1.
|t Introduction --
|g 8.2.
|t Theorems of Fuzzy Subgroup --
|g 8.3.
|t Fuzzy-level Subgroup --
|g 8.4.
|t Fuzzy Normal Subgroup --
|g 8.5.
|t Fuzzy Subgroups Using T-norms --
|g 8.6.
|t Product of Fuzzy Subgroups --
|g 8.7.
|t Summary --
|t References --
|g 9.
|t Application of Fuzzy/Intuitionistic Fuzzy Set In Image Processing --
|g 9.1.
|t Introduction --
|g 9.2.
|t Digital Images --
|g 9.3.
|t Image Enhancement --
|g 9.3.1.
|t Fuzzy Enhancement Method --
|g 9.3.2.
|t Intuitionistic Fuzzy Enhancement Method --
|g 9.4.
|t Thresholding --
|g 9.4.1.
|t Intuitionistic Fuzzy Thresholding Method --
|g 9.4.2.
|t Fuzzy Thresholding Method --
|g 9.5.
|t Edge Detection --
|g 9.5.1.
|t Fuzzy Edge-detection Method --
|g 9.5.2.
|t Intuitionistic Fuzzy Edge Detection --
|g 9.6.
|t Clustering --
|g 9.6.1.
|t Fuzzy c Means Clustering (FCM) --
|g 9.6.2.
|t Intuitionistic Fuzzy Clustering --
|g 9.6.3.
|t Kernel Clustering --
|g 9.7.
|t Mathematical Morphology --
|g 9.7.1.
|t Fuzzy Approach --
|g 9.7.2.
|t Intuitionistic Fuzzy Approach --
|g 9.8.
|t Summary --
|t References --
|g 10.
|t Type-2 Fuzzy Set --
|g 10.1.
|t Introduction --
|g 10.2.
|t Type-2 Fuzzy Set --
|g 10.3.
|t Operations on Type-2 Fuzzy Set --
|g 10.4.
|t Inclusion Measure and Similarity Measure --
|g 10.4.1.
|t Similarity Measure --
|g 10.5.
|t Interval Type-2 Fuzzy Set --
|g 10.6.
|t Application of Interval Type-2 Fuzzy Set in Image Segmentation --
|g 10.7.
|t Summary --
|t References.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on April 25, 2019).
|
650 |
|
0 |
|a Fuzzy sets.
|
650 |
|
0 |
|a Fuzzy numbers.
|
650 |
|
0 |
|a Set theory.
|
650 |
|
0 |
|a Approximation theory.
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|i Print version:
|a Chaira, Tamalika, author.
|t Fuzzy set and its extension
|b First edition.
|d Hoboken, NJ, USA : Wiley, 2019
|z 9781119544197
|w (DLC) 2019011921
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5741231
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b32645004
|b 200401
|c 190429
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g nju
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 8e7f327d-4e9e-5be4-a661-eb26dcfb16ca
|s 066fcc3c-cf33-56b3-9402-31b1d14ac1a9
|t 0
|