|
|
|
|
LEADER |
00000nam a22000001i 4500 |
001 |
b3270040 |
003 |
CStclU |
005 |
20190607060148.1 |
006 |
m |o d | |
007 |
cr |n||||||||| |
008 |
190607s2019 flua ob 001 0 eng d |
020 |
|
|
|a 9780429948855 (electronic bk.)
|
020 |
|
|
|a 0429948859 (electronic bk.)
|
020 |
|
|
|z 1138591645
|
020 |
|
|
|z 9781138591646
|
035 |
|
|
|a (NhCcYBP)ebc5741574
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
050 |
|
4 |
|a QA276.8
|b .D65 2019
|
082 |
0 |
4 |
|a 519.544
|2 23
|
100 |
1 |
|
|a Dokuchaev, Nikolai,
|e author.
|
245 |
1 |
0 |
|a Pathwise estimation and inference for diffusion market models /
|c Nikolai Dokuchaev, Lin Yee Hin.
|
264 |
|
1 |
|a Boca Raton :
|b CRC, Taylor & Francis Group,
|c 2019.
|
300 |
|
|
|a 1 online resource (224 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t Some background on stochastic analysis --
|g 1.1.
|t Basics of probability theory --
|g 1.1.1.
|t Probability space --
|g 1.1.2.
|t Random variables --
|g 1.1.3.
|t Expectations --
|g 1.1.4.
|t Conditional probability and expectation --
|g 1.1.5.
|t σ-algebra generated by a random vector --
|g 1.2.
|t Basics of stochastic processes --
|g 1.2.1.
|t Special classes of processes --
|g 1.2.2.
|t Wiener process (Brownian motion) --
|g 1.3.
|t Basics of the stochastic calculus (Ito calculus) --
|g 1.3.1.
|t Ito formula --
|g 1.3.2.
|t Stochastic differential equations (Ito equations) --
|g 1.3.3.
|t Some explicit solutions for Ito equations --
|g 1.3.4.
|t Diffusion Markov processes and related parabolic equations --
|g 1.3.5.
|t Martingale representation theorem --
|g 1.3.6.
|t Change of measure and Girsanov theorem --
|g 2.
|t Some background on diffusion market models --
|g 2.1.
|t Continuous time model for stock price --
|g 2.2.
|t Continuous time bond-stock market model --
|g 2.3.
|t Discounted wealth and stock prices --
|g 2.4.
|t Risk-neutral measure --
|g 2.5.
|t Replicating strategies --
|g 2.6.
|t Arbitrage possibilities and the arbitrage-free market --
|g 2.7.
|t case of a complete market --
|g 2.8.
|t Completeness of the Black-Scholes model --
|g 2.9.
|t Option pricing --
|g 2.9.1.
|t Options and their prices --
|g 2.9.2.
|t Option pricing for a complete market --
|g 2.9.3.
|t Black-Scholes formula --
|g 2.10.
|t Pricing for an incomplete market --
|g 2.11.
|t multi-stock market model --
|g 3.
|t Some special market models --
|g 3.1.
|t Mean-reverting market model --
|g 3.1.1.
|t Basic properties of a mean-reverting model --
|g 3.1.2.
|t Absence of arbitrage and the Novikov condition --
|g 3.1.3.
|t Proofs --
|g 3.2.
|t market model with delay in coefficients --
|g 3.2.1.
|t Existence, regularity, and non-arbitrage properties --
|g 3.2.2.
|t Time discretization and restrictions on growth --
|g 3.3.
|t market model with stochastic numeraire --
|g 3.3.1.
|t Model setting --
|g 3.3.2.
|t Replication of claims: Strategies and hedging errors --
|g 3.3.3.
|t On selection of θ and the equivalent martingale measure --
|g 3.3.4.
|t Markov case --
|g 3.3.5.
|t Proofs --
|g 3.4.
|t Bibliographic notes and literature review --
|g 4.
|t Path wise inference for the parameters of market models --
|g 4.1.
|t Estimation of volatility --
|g 4.1.1.
|t Representation theorems for the volatility --
|g 4.1.2.
|t Estimation of discrete time samples --
|g 4.1.3.
|t Reducing the impact of the appreciation rate --
|g 4.1.4.
|t algorithm --
|g 4.1.5.
|t Some experiments --
|g 4.2.
|t Modeling the impact of the sampling frequency --
|g 4.2.1.
|t Analysis of the model's parameters --
|g 4.2.2.
|t Monte Carlo simulation of the process with delay --
|g 4.2.3.
|t Examples for dependence of volatility on sampling frequency for historical data --
|g 4.2.4.
|t Matching delay parameters for historical data --
|g 4.3.
|t Inference for diffusion parameters for CIR-type models --
|g 4.3.1.
|t underlying continuous time model --
|g 4.3.2.
|t representation theorem for the diffusion coefficient --
|g 4.3.3.
|t Estimation based on the representation theorem --
|g 4.3.4.
|t Numerical experiments --
|g 4.3.5.
|t On the consistency of the method --
|g 4.3.6.
|t Some properties of the estimates --
|g 4.4.
|t Estimation of the appreciation rates --
|g 4.5.
|t Bibliographic notes and literature review --
|g 5.
|t Some background on bond pricing --
|g 5.1.
|t Zero-coupon bonds --
|g 5.2.
|t One-factor model --
|g 5.2.1.
|t Dynamics of discounted bond prices --
|g 5.2.2.
|t Dynamics of the bond prices under the original measure --
|g 5.2.3.
|t example: The Cox-Ross-Ingresoll model --
|g 5.3.
|t Vasicek model --
|g 5.4.
|t example of a multi-bond market model --
|g 6.
|t Implied volatility and other implied market parameters --
|g 6.1.
|t Risk-neutral pricing in a Black--Scoles setting --
|g 6.2.
|t Implied volatility: The case of constant τ --
|g 6.3.
|t Correction of the volatility smile for constant τ --
|g 6.3.1.
|t Imperfection of the volatility smile for constant τ --
|g 6.3.2.
|t pricing rule correcting the volatility smile --
|g 6.3.3.
|t class of volatilities in a Markovian setting --
|g 6.4.
|t Unconditionally implied volatility and risk-free rate --
|g 6.4.1.
|t Two calls with different strike prices --
|g 6.5.
|t Bond price inferred from option prices --
|g 6.5.1.
|t Definitions --
|g 6.5.2.
|t Inferred p from put and call prices --
|g 6.5.3.
|t Application to a special model --
|g 6.6.
|t dynamically purified option price process --
|g 6.7.
|t implied market price of risk with random numeraire --
|g 6.7.1.
|t risk-free bonds for the market with random numeraire --
|g 6.7.2.
|t case of a complete market --
|g 6.7.3.
|t case of an incomplete market --
|g 6.8.
|t Bibliographic notes --
|g 7.
|t Inference of implied parameters from option prices --
|g 7.1.
|t Sensitivity analysis of implied volatility estimation --
|g 7.1.1.
|t under-defined system of nonlinear equations --
|g 7.1.2.
|t Numerical analysis using cross-sectional S&P 500 call options data --
|g 7.1.3.
|t Numerical analysis using longitudinal S&P500 call options data --
|g 7.2.
|t brief review of evolutionary optimization --
|g 7.2.1.
|t original differential evolution algorithm --
|g 7.2.2.
|t Zhang-Sanderson adaptive differential evolution algorithms --
|g 7.3.
|t Inference of implied parameters from over-defined systems --
|g 7.3.1.
|t over-defined system of nonlinear equations --
|g 7.3.2.
|t Computational implementation --
|g 7.3.3.
|t Construction of the estimation uncertainty bounds for the estimated implied discount rates and implied volatilities --
|g 7.3.4.
|t Numerical experiment with synthetic test data --
|g 7.3.5.
|t Numerical analysis using historical S&P500 call options data --
|g 7.4.
|t Bibliographic notes and literature review --
|g 8.
|t Forecast of short rate based on the CIR model --
|g 8.1.
|t model framework --
|g 8.1.1.
|t General setting --
|g 8.1.2.
|t CIR model --
|g 8.2.
|t Inference of the implied CIR model parameters based on cross-sectional zero coupon bond prices --
|g 8.3.
|t Numerical framework for the inference --
|g 8.4.
|t Computational implementation --
|g 8.5.
|t Forecast of short rate using the implied CIR model parameters --
|g 8.5.1.
|t Forecast within the multi-curve framework --
|g 8.5.2.
|t Forecast within the single-curve framework --
|g 8.6.
|t Numerical analysis using historical data --
|g 8.6.1.
|t Short rate prediction in the multi-curve framework --
|g 8.6.2.
|t Short rate prediction in the single-curve framework --
|g 8.7.
|t Bibliographic notes and literature review.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
0 |
|a Estimation theory.
|
650 |
|
0 |
|a Capital market
|x Mathematical models.
|
700 |
1 |
|
|a Hin, Lin Yee,
|e author.
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|i ebook version :
|z 9780429948855
|
776 |
0 |
8 |
|c Original
|z 1138591645
|z 9781138591646
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5741574
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b32700404
|b 200401
|c 190610
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g flu
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i 2860ec4b-d4f4-5919-b162-4c84789cd15a
|s cdb3fdda-cf3f-557d-b15f-718d181a99e0
|t 0
|