Finite element analysis for biomedical engineering applications /
Saved in:
Main Author: | |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Boca Raton, FL :
CRC Press, Taylor & Francis Group,
[2019]
|
Subjects: | |
Online Access: | Connect to this title online (unlimited simultaneous users allowed; 325 uses per year) |
Table of Contents:
- Machine generated contents note: ch. 1 Introduction
- ch. 2 Bone Structure and Material Properties
- 2.1. Bone Structure
- 2.2. Material Properties of Bone
- References
- ch. 3 Simulation of Nonhomogeneous Bone
- 3.1. Building Bone Model from CT Data
- 3.1.1. CT Data
- 3.1.2. Finite Element Model
- 3.1.3. Calculation of the Average CT Number (HU)
- 3.1.4. Material Property Assignment
- 3.1.5. Discussion
- 3.1.6. Summary
- 3.2. Interpolation of Bone Material Properties
- 3.2.1. Multidimensional Interpolation
- 3.2.1.1. RBAS Algorithm
- 3.2.1.2. NNEI Algorithm
- 3.2.1.3. LMUL Algorithm
- 3.2.2. Interpolation of Material Properties of the Ankle
- 3.2.2.1. Defining Material Properties of Bone Using the RBAS Algorithm
- 3.2.2.2. Defining Material Properties of Bone Using the NNEI Algorithm
- 3.2.2.3. Defining Material Properties of Bone Using the LMUL Algorithm
- 3.2.2.4. Defining Material Properties of Bone Using a Mixed Method
- 3.2.3. Discussion
- 3.2.4. Summary
- References
- ch. 4 Simulation of Anisotropic Bone
- 4.1. Anisotropic Material Models
- 4.2. Finite Element Model of Femur with Anisotropic Materials
- 4.2.1. Finite Element Model of Femur with Anisotropic Materials
- 4.2.2. Simulation of Mechanical Testing of the Femur
- 4.2.3. Discussion
- 4.2.4. Summary
- References
- ch. 5 Simulation of Crack Growth Using the eXtended Finite Element Method (XFEM)
- 5.1. Introduction to XFEM
- 5.1.1. Singularity-Based Method
- 5.1.2. Phantom-Node Method
- 5.1.3. General Process for Performing XFEM Crack-Growth Simulation
- 5.2. Simulation of Crack Growth of the Cortical Bone
- 5.2.1. Finite Element Model
- 5.2.1.1. Geometry and Mesh
- 5.2.1.2. Material Properties
- 5.2.1.3. Definition of Crack Front
- 5.2.1.4. Local Coordinate Systems
- 5.2.1.5. Loading and Boundary Conditions
- 5.2.1.6. Solution Setting
- 5.2.2. Results
- 5.2.3. Discussion
- 5.2.4. Summary
- References
- ch. 6 Structure and Material Properties of Soft Tissues
- 6.1. Cartilage
- 6.1.1. Structure of Cartilage
- 6.1.2. Material Properties of Cartilage
- 6.2. Ligaments
- 6.2.1. Structure of Ligaments
- 6.2.2. Material Properties of Ligaments
- 6.3. Intervertebral Disc
- References
- ch. 7 Nonlinear Behavior of Soft Tissues
- 7.1. Hyperelastic Models
- 7.2. Finite Element Analysis of the Abdominal Aortic Aneurysm Wall
- 7.2.1. Finite Element Model
- 7.2.1.1. Geometry and Mesh
- 7.2.1.2. Material Model
- 7.2.1.3. Loading and Boundary Conditions
- 7.2.1.4. Solution Setting
- 7.2.2. Results
- 7.2.3. Discussion
- 7.2.4. Summary
- References
- ch. 8 Viscoelasticity of Soft Tissues
- 8.1. Maxwell Model
- 8.2. Study of PDL Creep
- 8.2.1. Finite Element Model
- 8.2.1.1. Geometry and Mesh
- 8.2.1.2. Material Models
- 8.2.1.3. Boundary Conditions
- 8.2.1.4. Loading Steps
- 8.2.2. Results
- 8.2.3. Discussion
- 8.2.4. Summary
- References
- ch. 9 Fiber Enhancement
- 9.1. Standard Fiber Enhancement
- 9.1.1. Introduction of Standard Fiber Enhancement
- 9.1.2. IVD Model with Fiber Enhancement
- 9.1.2.1. Finite Element Model of IVD
- 9.1.2.2. Results
- 9.1.2.3. Discussion
- 9.1.2.4. Summary
- 9.2. Mesh-Independent Fiber Enhancement
- 9.2.1. Introduction of Mesh-Independent Fiber Enhancement
- 9.2.2. IVD Model with Mesh-Independent Fiber Enhancement
- 9.2.2.1. Finite Element Model
- 9.2.2.2. Creating the Fibers
- 9.2.2.3. Results
- 9.2.2.4. Summary
- 9.3. Material Models Including Fiber Enhancement
- 9.3.1. Anisotropic Material Model with Fiber Enhancement
- 9.3.2. Simulation of Anterior Cruciate Ligament (ACL)
- 9.3.2.1. Finite Element Model
- 9.3.2.2. Results
- 9.3.2.3. Discussion
- 9.3.2.4. Summary
- References
- ch. 10 USERMAT for Simulation of Soft Tissues
- 10.1. Introduction of Subroutine UserHyper
- 10.2. Simulation of AAA Using UserHyper
- 10.2.1. Using Subroutine UserHyper to Simulate Soft Tissues of the Artery
- 10.2.2. Validation
- 10.2.3. Study the AAA Using UserHyper
- 10.2.4. Discussion
- 10.2.5. Summary
- References
- ch. 11 Modeling Soft Tissues as Porous Media
- 11.1. CPT Elements
- 11.2. Study of Head Impact
- 11.2.1. Finite Element Model of the Head
- 11.2.1.1. Geometry and Mesh
- 11.2.1.2. Material Properties
- 11.2.1.3. Loading and Boundary Conditions
- 11.2.2. Results
- 11.2.3. Discussion
- 11.2.4. Summary
- 11.3. Simulation of Creep Behavior of the IVD
- 11.3.1. Finite Element Method
- 11.3.1.1. Geometry and Mesh
- 11.3.1.2. Material Properties
- 11.3.1.3. Loading and Boundary Conditions
- 11.3.1.4. Solution Setting
- 11.3.2. Results
- 11.3.3. Discussion
- 11.3.4. Summary
- References
- ch. 12 Structure and Function of Joints
- Reference
- ch. 13 Modeling Contact
- 13.1. Contact Models
- 13.2. 3D Knee Contact Model
- 13.2.1. Finite Element Model
- 13.2.1.1. Geometry and Mesh
- 13.2.1.2. Material Properties
- 13.2.1.3. Contact Pairs
- 13.2.1.4. Boundary Conditions
- 13.2.2. Results
- 13.2.3. Discussion
- 13.2.4. Summary
- 13.3. 2D Poroelastic Model of Knee
- 13.3.1. Finite Element Model
- 13.3.1.1. Geometry and Mesh
- 13.3.1.2. Material Properties
- 13.3.1.3. Contact Definitions
- 13.3.1.4. Boundary Conditions and Loading
- 13.3.1.5. Solution Setting
- 13.3.2. Results
- 13.3.3. Discussion
- 13.3.4. Summary
- References
- ch. 14 Application of the Discrete Element Method for Study of the Knee Joint
- 14.1. Introduction of Discrete Element Method
- 14.2. Finite Element Model
- 14.2.1. Line-Plane Intersection
- 14.2.2. Building Springs
- 14.2.3. Boundary Conditions
- 14.2.4. Results
- 14.2.5. Discussion
- 14.2.6. Summary
- References
- ch. 15 Study of Contact in Ankle Replacement
- 15.1. Finite Element Model
- 15.1.1. Geometry and Mesh
- 15.1.2. Material Properties
- 15.1.3. Contact Definition
- 15.1.4. Loading and Boundary Conditions
- 15.2. Results
- 15.3. Discussion
- 15.4. Summary
- References
- ch. 16 Simulation of Shape Memory Alloy (SMA) Cardiovascular Stent
- 16.1. SMA Models
- 16.1.1. SMA Model for Superelasticity
- 16.1.2. SMA Model with Shape Memory Effort
- 16.2. Simulation of Angioplasty with Vascular Stenting
- 16.2.1. Finite Element Model
- 16.2.1.1. Geometry and Mesh
- 16.2.1.2. Material Properties
- 16.2.1.3. Contact Pairs
- 16.2.1.4. Solution Setting
- 16.2.2. Results
- 16.2.3. Discussion
- 16.2.4. Summary
- References
- ch. 17 Wear Model of Liner in Hip Replacement
- 17.1. Wear Simulation
- 17.1.1. Archard Wear Model
- 17.1.2. Improving Mesh Quality during Wear
- 17.2. Simulating Wear of Liner in Hip Replacement
- 17.2.1. Finite Element Method
- 17.2.1.1. Geometry and Mesh
- 17.2.1.2. Material Properties
- 17.2.1.3. Wear Model
- 17.2.1.4. Contact Definition
- 17.2.1.5. Loading and Boundary Conditions
- 17.2.1.6. Solution Setting
- 17.2.2. Results
- 17.2.3. Discussion
- 17.2.4. Summary
- References
- ch. 18 Fatigue Analysis of a Mini Dental Implant (MDI)
- 18.1. SMART Crack-Growth Technology
- 18.2. Study of Fatigue Life of an MDI
- 18.2.1. Finite Element Model
- 18.2.1.1. Geometry and Mesh
- 18.2.1.2. Material Properties
- 18.2.1.3. Loading and Boundary Conditions
- 18.2.1.4. Setting up Fracture Calculation
- 18.2.2. Results
- 18.2.3. Discussion
- 18.2.4. Summary
- References
- ch. 19 Retrospective
- 19.1. Principles for Modeling Biology
- 19.2. Meshing Sensitivity
- 19.3. Units
- 19.4. Workbench
- 19.5. ANSYS Versions.