Finite element analysis for biomedical engineering applications /

Saved in:
Bibliographic Details
Main Author: Yang, Z. (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: ch. 1 Introduction
  • ch. 2 Bone Structure and Material Properties
  • 2.1. Bone Structure
  • 2.2. Material Properties of Bone
  • References
  • ch. 3 Simulation of Nonhomogeneous Bone
  • 3.1. Building Bone Model from CT Data
  • 3.1.1. CT Data
  • 3.1.2. Finite Element Model
  • 3.1.3. Calculation of the Average CT Number (HU)
  • 3.1.4. Material Property Assignment
  • 3.1.5. Discussion
  • 3.1.6. Summary
  • 3.2. Interpolation of Bone Material Properties
  • 3.2.1. Multidimensional Interpolation
  • 3.2.1.1. RBAS Algorithm
  • 3.2.1.2. NNEI Algorithm
  • 3.2.1.3. LMUL Algorithm
  • 3.2.2. Interpolation of Material Properties of the Ankle
  • 3.2.2.1. Defining Material Properties of Bone Using the RBAS Algorithm
  • 3.2.2.2. Defining Material Properties of Bone Using the NNEI Algorithm
  • 3.2.2.3. Defining Material Properties of Bone Using the LMUL Algorithm
  • 3.2.2.4. Defining Material Properties of Bone Using a Mixed Method
  • 3.2.3. Discussion
  • 3.2.4. Summary
  • References
  • ch. 4 Simulation of Anisotropic Bone
  • 4.1. Anisotropic Material Models
  • 4.2. Finite Element Model of Femur with Anisotropic Materials
  • 4.2.1. Finite Element Model of Femur with Anisotropic Materials
  • 4.2.2. Simulation of Mechanical Testing of the Femur
  • 4.2.3. Discussion
  • 4.2.4. Summary
  • References
  • ch. 5 Simulation of Crack Growth Using the eXtended Finite Element Method (XFEM)
  • 5.1. Introduction to XFEM
  • 5.1.1. Singularity-Based Method
  • 5.1.2. Phantom-Node Method
  • 5.1.3. General Process for Performing XFEM Crack-Growth Simulation
  • 5.2. Simulation of Crack Growth of the Cortical Bone
  • 5.2.1. Finite Element Model
  • 5.2.1.1. Geometry and Mesh
  • 5.2.1.2. Material Properties
  • 5.2.1.3. Definition of Crack Front
  • 5.2.1.4. Local Coordinate Systems
  • 5.2.1.5. Loading and Boundary Conditions
  • 5.2.1.6. Solution Setting
  • 5.2.2. Results
  • 5.2.3. Discussion
  • 5.2.4. Summary
  • References
  • ch. 6 Structure and Material Properties of Soft Tissues
  • 6.1. Cartilage
  • 6.1.1. Structure of Cartilage
  • 6.1.2. Material Properties of Cartilage
  • 6.2. Ligaments
  • 6.2.1. Structure of Ligaments
  • 6.2.2. Material Properties of Ligaments
  • 6.3. Intervertebral Disc
  • References
  • ch. 7 Nonlinear Behavior of Soft Tissues
  • 7.1. Hyperelastic Models
  • 7.2. Finite Element Analysis of the Abdominal Aortic Aneurysm Wall
  • 7.2.1. Finite Element Model
  • 7.2.1.1. Geometry and Mesh
  • 7.2.1.2. Material Model
  • 7.2.1.3. Loading and Boundary Conditions
  • 7.2.1.4. Solution Setting
  • 7.2.2. Results
  • 7.2.3. Discussion
  • 7.2.4. Summary
  • References
  • ch. 8 Viscoelasticity of Soft Tissues
  • 8.1. Maxwell Model
  • 8.2. Study of PDL Creep
  • 8.2.1. Finite Element Model
  • 8.2.1.1. Geometry and Mesh
  • 8.2.1.2. Material Models
  • 8.2.1.3. Boundary Conditions
  • 8.2.1.4. Loading Steps
  • 8.2.2. Results
  • 8.2.3. Discussion
  • 8.2.4. Summary
  • References
  • ch. 9 Fiber Enhancement
  • 9.1. Standard Fiber Enhancement
  • 9.1.1. Introduction of Standard Fiber Enhancement
  • 9.1.2. IVD Model with Fiber Enhancement
  • 9.1.2.1. Finite Element Model of IVD
  • 9.1.2.2. Results
  • 9.1.2.3. Discussion
  • 9.1.2.4. Summary
  • 9.2. Mesh-Independent Fiber Enhancement
  • 9.2.1. Introduction of Mesh-Independent Fiber Enhancement
  • 9.2.2. IVD Model with Mesh-Independent Fiber Enhancement
  • 9.2.2.1. Finite Element Model
  • 9.2.2.2. Creating the Fibers
  • 9.2.2.3. Results
  • 9.2.2.4. Summary
  • 9.3. Material Models Including Fiber Enhancement
  • 9.3.1. Anisotropic Material Model with Fiber Enhancement
  • 9.3.2. Simulation of Anterior Cruciate Ligament (ACL)
  • 9.3.2.1. Finite Element Model
  • 9.3.2.2. Results
  • 9.3.2.3. Discussion
  • 9.3.2.4. Summary
  • References
  • ch. 10 USERMAT for Simulation of Soft Tissues
  • 10.1. Introduction of Subroutine UserHyper
  • 10.2. Simulation of AAA Using UserHyper
  • 10.2.1. Using Subroutine UserHyper to Simulate Soft Tissues of the Artery
  • 10.2.2. Validation
  • 10.2.3. Study the AAA Using UserHyper
  • 10.2.4. Discussion
  • 10.2.5. Summary
  • References
  • ch. 11 Modeling Soft Tissues as Porous Media
  • 11.1. CPT Elements
  • 11.2. Study of Head Impact
  • 11.2.1. Finite Element Model of the Head
  • 11.2.1.1. Geometry and Mesh
  • 11.2.1.2. Material Properties
  • 11.2.1.3. Loading and Boundary Conditions
  • 11.2.2. Results
  • 11.2.3. Discussion
  • 11.2.4. Summary
  • 11.3. Simulation of Creep Behavior of the IVD
  • 11.3.1. Finite Element Method
  • 11.3.1.1. Geometry and Mesh
  • 11.3.1.2. Material Properties
  • 11.3.1.3. Loading and Boundary Conditions
  • 11.3.1.4. Solution Setting
  • 11.3.2. Results
  • 11.3.3. Discussion
  • 11.3.4. Summary
  • References
  • ch. 12 Structure and Function of Joints
  • Reference
  • ch. 13 Modeling Contact
  • 13.1. Contact Models
  • 13.2. 3D Knee Contact Model
  • 13.2.1. Finite Element Model
  • 13.2.1.1. Geometry and Mesh
  • 13.2.1.2. Material Properties
  • 13.2.1.3. Contact Pairs
  • 13.2.1.4. Boundary Conditions
  • 13.2.2. Results
  • 13.2.3. Discussion
  • 13.2.4. Summary
  • 13.3. 2D Poroelastic Model of Knee
  • 13.3.1. Finite Element Model
  • 13.3.1.1. Geometry and Mesh
  • 13.3.1.2. Material Properties
  • 13.3.1.3. Contact Definitions
  • 13.3.1.4. Boundary Conditions and Loading
  • 13.3.1.5. Solution Setting
  • 13.3.2. Results
  • 13.3.3. Discussion
  • 13.3.4. Summary
  • References
  • ch. 14 Application of the Discrete Element Method for Study of the Knee Joint
  • 14.1. Introduction of Discrete Element Method
  • 14.2. Finite Element Model
  • 14.2.1. Line-Plane Intersection
  • 14.2.2. Building Springs
  • 14.2.3. Boundary Conditions
  • 14.2.4. Results
  • 14.2.5. Discussion
  • 14.2.6. Summary
  • References
  • ch. 15 Study of Contact in Ankle Replacement
  • 15.1. Finite Element Model
  • 15.1.1. Geometry and Mesh
  • 15.1.2. Material Properties
  • 15.1.3. Contact Definition
  • 15.1.4. Loading and Boundary Conditions
  • 15.2. Results
  • 15.3. Discussion
  • 15.4. Summary
  • References
  • ch. 16 Simulation of Shape Memory Alloy (SMA) Cardiovascular Stent
  • 16.1. SMA Models
  • 16.1.1. SMA Model for Superelasticity
  • 16.1.2. SMA Model with Shape Memory Effort
  • 16.2. Simulation of Angioplasty with Vascular Stenting
  • 16.2.1. Finite Element Model
  • 16.2.1.1. Geometry and Mesh
  • 16.2.1.2. Material Properties
  • 16.2.1.3. Contact Pairs
  • 16.2.1.4. Solution Setting
  • 16.2.2. Results
  • 16.2.3. Discussion
  • 16.2.4. Summary
  • References
  • ch. 17 Wear Model of Liner in Hip Replacement
  • 17.1. Wear Simulation
  • 17.1.1. Archard Wear Model
  • 17.1.2. Improving Mesh Quality during Wear
  • 17.2. Simulating Wear of Liner in Hip Replacement
  • 17.2.1. Finite Element Method
  • 17.2.1.1. Geometry and Mesh
  • 17.2.1.2. Material Properties
  • 17.2.1.3. Wear Model
  • 17.2.1.4. Contact Definition
  • 17.2.1.5. Loading and Boundary Conditions
  • 17.2.1.6. Solution Setting
  • 17.2.2. Results
  • 17.2.3. Discussion
  • 17.2.4. Summary
  • References
  • ch. 18 Fatigue Analysis of a Mini Dental Implant (MDI)
  • 18.1. SMART Crack-Growth Technology
  • 18.2. Study of Fatigue Life of an MDI
  • 18.2.1. Finite Element Model
  • 18.2.1.1. Geometry and Mesh
  • 18.2.1.2. Material Properties
  • 18.2.1.3. Loading and Boundary Conditions
  • 18.2.1.4. Setting up Fracture Calculation
  • 18.2.2. Results
  • 18.2.3. Discussion
  • 18.2.4. Summary
  • References
  • ch. 19 Retrospective
  • 19.1. Principles for Modeling Biology
  • 19.2. Meshing Sensitivity
  • 19.3. Units
  • 19.4. Workbench
  • 19.5. ANSYS Versions.