Analytic theory of global bifurcation : an introduction /

Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions...

Full description

Saved in:
Bibliographic Details
Main Author: Buffoni, Boris, 1965-
Other Authors: Toland, John, 1949-
Format: Electronic eBook
Language:English
Published: Princeton, N.J. : Princeton University Press, ©2003.
Series:Princeton series in applied mathematics.
Subjects:
Online Access:Connect to this title online (unlimited users allowed)

MARC

LEADER 00000cam a2200000 i 4500
001 b3321385
003 CStclU
005 20240524050223.0
006 m o d
007 cr cnu---unuuu
008 160829s2003 njua ob 001 0 eng d
019 |a jeba1175622422 
020 |a 9781400884339  |q (electronic bk.) 
020 |a 1400884330  |q (electronic bk.) 
020 |z 0691112983 
020 |z 9780691112985 
035 |a (OCoLC)jeba957489869 
035 |a (OCoLC)957489869  |z (OCoLC)1175622422 
037 |a 22573/ctt1dwxmjn  |b JSTOR 
040 |a JSTOR  |b eng  |e rda  |e pn  |c JSTOR  |d EBLCP  |d IDEBK  |d DEBBG  |d OCLCQ  |d IOG  |d MERUC  |d EZ9  |d OCLCQ  |d OCLCO  |d TXC  |d OCLCQ  |d LVT  |d UKAHL  |d OCLCQ  |d MM9  |d UX1  |d UHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a STAW 
050 4 |a QA380  |b .B84 2003eb 
084 |a 31.46  |2 bcl 
084 |a SK 520  |2 rvk 
084 |a SK 600  |2 rvk 
100 1 |a Buffoni, Boris,  |d 1965-  |1 https://id.oclc.org/worldcat/entity/E39PCjJ86RfpHKTVMgvTQhFWj3 
245 1 0 |a Analytic theory of global bifurcation :  |b an introduction /  |c Boris Buffoni and John Toland. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2003. 
300 |a 1 online resource (x, 169 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Princeton series in applied mathematics 
504 |a Includes bibliographical references (pages 161-165) and index. 
505 0 0 |g Ch. 1.  |t Introduction --  |g pt. 1.  |t Linear and Nonlinear Functional Analysis --  |g Ch. 2.  |t Linear Functional Analysis --  |g Ch. 3.  |t Calculus in Banach Spaces --  |g Ch. 4.  |t Multilinear and Analytic Operators --  |g pt. 2.  |t Analytic Varieties --  |g Ch. 5.  |t Analytic Functions of F[superscript n] --  |g Ch. 6.  |t Polynomials --  |g Ch. 7.  |t Analytic Varieties --  |g pt. 3.  |t Bifurcation Theory --  |g Ch. 8.  |t Local Bifurcation Theory --  |g Ch. 9.  |t Global Bifurcation Theory --  |g pt. 4.  |t Stokes Waves --  |g Ch. 10.  |t Steady Periodic Water Waves --  |g Ch. 11.  |t Global Existence of Stokes Waves. 
520 |a Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, Analytic Theory of Global Bifurcation is intended for graduate students and researchers in pure and applied analysis. 
588 0 |a Print version record. 
650 0 |a Bifurcation theory. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Bifurcation theory  |2 fast 
650 7 |a Funktionalanalysis  |2 gnd 
650 7 |a Globale Verzweigung  |2 gnd 
650 1 7 |a Bifurcatie.  |2 gtt 
650 1 7 |a Analytische functies.  |2 gtt 
650 1 7 |a Differentiaalvergelijkingen.  |2 gtt 
650 7 |a Análise global.  |2 larpcal 
650 7 |a Teoria da bifurcação (equações diferenciais)  |2 larpcal 
700 1 |a Toland, John,  |d 1949-  |1 https://id.oclc.org/worldcat/entity/E39PBJgxtgCFtDMXYw3FcQPWjC 
776 0 8 |i Print version:  |a Buffoni, Boris, 1965-  |t Analytic theory of global bifurcation.  |d Princeton, N.J. : Princeton University Press, ©2003  |z 0691112983  |w (DLC) 2002192482  |w (OCoLC)51059174 
830 0 |a Princeton series in applied mathematics. 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://www.jstor.org/stable/10.2307/j.ctt1dwstqb  |z Connect to this title online (unlimited users allowed)  |t 0 
907 |a .b33213859  |b 240528  |c 190723 
998 |a uww  |b    |c m  |d z   |e l  |f eng  |g nju  |h 0 
919 |a .ulebk  |b 2024-02-15 
917 |a JSTOR EBA Program 
999 f f |i 4ee1239d-dcbe-5188-b154-a90a9f9f3afc  |s fcba9abb-5480-5d74-b472-bc96d8a4d178  |t 0