|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
b3333426 |
003 |
CStclU |
005 |
20190814105233.6 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
190126t20192019njua ob 001 0 eng |
010 |
|
|
|a 2019004054
|
020 |
|
|
|a 9781119488781
|q electronic book
|
020 |
|
|
|a 1119488788
|q electronic book
|
020 |
|
|
|a 9781119488774
|q electronic book
|
020 |
|
|
|a 111948877X
|q electronic book
|
020 |
|
|
|z 9781119488750
|q hardcover
|
020 |
|
|
|z 1119488753
|q hardcover
|
035 |
|
|
|a (DLC)ebc5781623
|
040 |
|
|
|a NhCcYBP
|c NhCcYBP
|
042 |
|
|
|a pcc
|
050 |
|
4 |
|a TA1638.4
|b .D49 2019
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
0 |
|a 006.4/2015181
|2 23
|
100 |
1 |
|
|a Dey, Sandip,
|d 1977-
|e author.
|
245 |
1 |
0 |
|a Quantum inspired meta-heuristics for image analysis /
|c Sandip Dey, Siddhartha Bhattacharyya, Ujjwal Maulik.
|
264 |
|
1 |
|a Hoboken, NJ :
|b John Wiley & Sons, Inc.,
|c 2019.
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (xvi, 358 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.1.
|t Image Analysis --
|g 1.1.1.
|t Image Segmentation --
|g 1.1.2.
|t Image Thresholding --
|g 1.2.
|t Prerequisites of Quantum Computing --
|g 1.2.1.
|t Dirac's Notation --
|g 1.2.2.
|t Qubit --
|g 1.2.3.
|t Quantum Superposition --
|g 1.2.4.
|t Quantum Gates --
|g 1.2.4.1.
|t Quantum NOT Gate (Matrix Representation) --
|g 1.2.4.2.
|t Quantum Z Gate (Matrix Representation) --
|g 1.2.4.3.
|t Hadamard Gate --
|g 1.2.4.4.
|t Phase Shift Gate --
|g 1.2.4.5.
|t Controlled NOT Gate (CNOT) --
|g 1.2.4.6.
|t SWAP Gate --
|g 1.2.4.7.
|t Toffoli Gate --
|g 1.2.4.8.
|t Fredkin Gate --
|g 1.2.4.9.
|t Quantum Rotation Gate --
|g 1.2.5.
|t Quantum Register --
|g 1.2.6.
|t Quantum Entanglement --
|g 1.2.7.
|t Quantum Solutions of NP-complete Problems --
|g 1.3.
|t Role of Optimization --
|g 1.3.1.
|t Single-objective Optimization --
|g 1.3.2.
|t Multi-objective Optimization --
|g 1.3.3.
|t Application of Optimization to Image Analysis --
|g 1.4.
|t Related Literature Survey --
|g 1.4.1.
|t Quantum-based Approaches --
|g 1.4.2.
|t Meta-heuristic-based Approaches --
|g 1.4.3.
|t Multi-objective-based Approaches --
|g 1.5.
|t Organization of the Book --
|g 1.5.1.
|t Quantum Inspired Meta-heuristics for Bi-level Image Thresholding --
|g 1.5.2.
|t Quantum Inspired Meta-heuristics for Gray-scale Multi-level Image Thresholding --
|g 1.5.3.
|t Quantum Behaved Meta-heuristics for True Color Multi-level Thresholding --
|g 1.5.4.
|t Quantum Inspired Multi-objective Algorithms for Multi-level Image Thresholding --
|g 1.6.
|t Conclusion --
|g 1.7.
|t Summary --
|t Exercise Questions --
|g 2.1.
|t Introduction --
|g 2.2.
|t Definition --
|g 2.3.
|t Mathematical Formalism --
|g 2.4.
|t Current Technologies --
|g 2.4.1.
|t Digital Image Analysis Methodologies --
|g 2.4.1.1.
|t Image Segmentation --
|g 2.4.1.2.
|t Feature Extraction/Selection --
|g 2.4.1.3.
|t Classification --
|g 2.5.
|t Overview of Different Thresholding Techniques --
|g 2.5.1.
|t Ramesh's Algorithm --
|g 2.5.2.
|t Shanbag's Algorithm --
|g 2.5.3.
|t Correlation Coefficient --
|g 2.5.4.
|t Pun's Algorithm --
|g 2.5.5.
|t Wu's Algorithm --
|g 2.5.6.
|t Renyi's Algorithm --
|g 2.5.7.
|t Yen's Algorithm --
|g 2.5.8.
|t Johannsen's Algorithm --
|g 2.5.9.
|t Silva's Algorithm --
|g 2.5.10.
|t Fuzzy Algorithm --
|g 2.5.11.
|t Brink's Algorithm --
|g 2.5.12.
|t Otsu's Algorithm --
|g 2.5.13.
|t Kittler's Algorithm --
|g 2.5.14.
|t Li's Algorithm --
|g 2.5.15.
|t Kapur's Algorithm --
|g 2.5.16.
|t Huang's Algorithm --
|g 2.6.
|t Applications of Image Analysis --
|g 2.7.
|t Conclusion --
|g 2.8.
|t Summary --
|t Exercise Questions --
|g 3.1.
|t Introduction --
|g 3.1.1.
|t Impact on Controlling Parameters --
|g 3.2.
|t Genetic Algorithms --
|g 3.2.1.
|t Fundamental Principles and Features --
|g 3.2.2.
|t Pseudo-code of Genetic Algorithms --
|g 3.2.3.
|t Encoding Strategy and the Creation of Population --
|g 3.2.4.
|t Evaluation Techniques --
|g 3.2.5.
|t Genetic Operators --
|g 3.2.6.
|t Selection Mechanism --
|g 3.2.7.
|t Crossover --
|g 3.2.8.
|t Mutation --
|g 3.3.
|t Particle Swarm Optimization --
|g 3.3.1.
|t Pseudo-code of Particle Swarm Optimization --
|g 3.3.2.
|t PSO: Velocity and Position Update --
|g 3.4.
|t Ant Colony Optimization --
|g 3.4.1.
|t Stigmergy in Ants: Biological Inspiration --
|g 3.4.2.
|t Pseudo-code of Ant Colony Optimization --
|g 3.4.3.
|t Pheromone Trails --
|g 3.4.4.
|t Updating Pheromone Trails --
|g 3.5.
|t Differential Evolution --
|g 3.5.1.
|t Pseudo-code of Differential Evolution --
|g 3.5.2.
|t Basic Principles of DE --
|g 3.5.3.
|t Mutation --
|g 3.5.4.
|t Crossover --
|g 3.5.5.
|t Selection --
|g 3.6.
|t Simulated Annealing --
|g 3.6.1.
|t Pseudo-code of Simulated Annealing --
|g 3.6.2.
|t Basics of Simulated Annealing --
|g 3.7.
|t Tabu Search --
|g 3.7.1.
|t Pseudo-code of Tabu Search --
|g 3.7.2.
|t Memory Management in Tabu Search --
|g 3.7.3.
|t Parameters Used in Tabu Search --
|g 3.8.
|t Conclusion --
|g 3.9.
|t Summary --
|t Exercise Questions --
|g 4.1.
|t Introduction --
|g 4.2.
|t Quantum Inspired Genetic Algorithm --
|g 4.2.1.
|t Initialize the Population of Qubit Encoded Chromosomes --
|g 4.2.2.
|t Perform Quantum Interference --
|g 4.2.2.1.
|t Generate Random Chaotic Map for Each Qubit State --
|g 4.2.2.2.
|t Initiate Probabilistic Switching Between Chaotic Maps --
|g 4.2.3.
|t Find the Threshold Value in Population and Evaluate Fitness --
|g 4.2.4.
|t Apply Selection Mechanism to Generate a New Population --
|g 4.2.5.
|t Foundation of Quantum Crossover --
|g 4.2.6.
|t Foundation of Quantum Mutation --
|g 4.2.7.
|t Foundation of Quantum Shift --
|g 4.2.8.
|t Complexity Analysis --
|g 4.3.
|t Quantum Inspired Particle Swarm Optimization --
|g 4.3.1.
|t Complexity Analysis --
|g 4.4.
|t Implementation Results --
|g 4.4.1.
|t Experimental Results (Phase I) --
|g 4.4.1.1.
|t Implementation Results for QEA --
|g 4.4.2.
|t Experimental Results (Phase II) --
|g 4.4.2.1.
|t Experimental Results of Proposed QIGA and Conventional GA --
|g 4.4.2.2.
|t Results Obtained with QEA --
|g 4.4.3.
|t Experimental Results (Phase III) --
|g 4.4.3.1.
|t Results Obtained with Proposed QIGA and Conventional GA --
|g 4.4.3.2.
|t Results obtained from QEA --
|g 4.5.
|t Comparative Analysis among the Participating Algorithms --
|g 4.6.
|t Conclusion --
|g 4.7.
|t Summary --
|t Exercise Questions --
|t Coding Examples --
|g 5.1.
|t Introduction --
|g 5.2.
|t Quantum Inspired Genetic Algorithm --
|g 5.2.1.
|t Population Generation --
|g 5.2.2.
|t Quantum Orthogonality --
|g 5.2.3.
|t Determination of Threshold Values in Population and Measurement of Fitness --
|g 5.2.4.
|t Selection --
|g 5.2.5.
|t Quantum Crossover --
|g 5.2.6.
|t Quantum Mutation --
|g 5.2.7.
|t Complexity Analysis --
|g 5.3.
|t Quantum Inspired Particle Swarm Optimization --
|g 5.3.1.
|t Complexity Analysis --
|g 5.4.
|t Quantum Inspired Differential Evolution --
|g 5.4.1.
|t Complexity Analysis --
|g 5.5.
|t Quantum Inspired Ant Colony Optimization --
|g 5.5.1.
|t Complexity Analysis --
|g 5.6.
|t Quantum Inspired Simulated Annealing --
|g 5.6.1.
|t Complexity Analysis --
|g 5.7.
|t Quantum Inspired Tabu Search --
|g 5.7.1.
|t Complexity Analysis --
|g 5.8.
|t Implementation Results --
|g 5.8.1.
|t Consensus Results of the Quantum Algorithms --
|g 5.9.
|t Comparison of QIPSO with Other Existing Algorithms --
|g 5.10.
|t Conclusion --
|g 5.11.
|t Summary --
|t Exercise Questions --
|t Coding Examples --
|g 6.1.
|t Introduction --
|g 6.2.
|t Background --
|g 6.3.
|t Quantum Inspired Ant Colony Optimization --
|g 6.3.1.
|t Complexity Analysis --
|g 6.4.
|t Quantum Inspired Differential Evolution --
|g 6.4.1.
|t Complexity Analysis --
|g 6.5.
|t Quantum Inspired Particle Swarm Optimization --
|g 6.5.1.
|t Complexity Analysis --
|g 6.6.
|t Quantum Inspired Genetic Algorithm --
|g 6.6.1.
|t Complexity Analysis --
|g 6.7.
|t Quantum Inspired Simulated Annealing --
|g 6.7.1.
|t Complexity Analysis --
|g 6.8.
|t Quantum Inspired Tabu Search --
|g 6.8.1.
|t Complexity Analysis --
|g 6.9.
|t Implementation Results --
|g 6.9.1.
|t Experimental Results (Phase I) --
|g 6.9.1.1.
|t Stability of the Comparable Algorithms --
|g 6.9.2.
|t Performance Evaluation of the Comparable Algorithms of Phase I --
|g 6.9.3.
|t Experimental Results (Phase II) --
|g 6.9.4.
|t Performance Evaluation of the Participating Algorithms of Phase II --
|g 6.10.
|t Conclusion --
|g 6.11.
|t Summary --
|t Exercise Questions --
|t Coding Examples --
|g 7.1.
|t Introduction --
|g 7.2.
|t Multi-objective Optimization --
|g 7.3.
|t Experimental Methodology for Gray-Scale Multi-Level Image Thresholding --
|g 7.3.1.
|t Quantum Inspired Non-dominated Sorting-Based Multi-objective Genetic Algorithm --
|g 7.3.2.
|t Complexity Analysis --
|g 7.3.3.
|t Quantum Inspired Simulated Annealing for Multi-objective Algorithms --
|g 7.3.3.1.
|t Complexity Analysis --
|g 7.3.4.
|t Quantum Inspired Multi-objective Particle Swarm Optimization --
|g 7.3.4.1.
|t Complexity Analysis --
|g 7.3.5.
|t Quantum Inspired Multi-objective Ant Colony Optimization --
|g 7.3.5.1.
|t Complexity Analysis --
|g 7.4.
|t Implementation Results --
|g 7.4.1.
|t Experimental Results --
|g 7.4.1.1.
|t Results of Multi-Level Thresholding for QINSGA-II, NSGA-II, and SMS-EMOA --
|g 7.4.1.2.
|t Stability of the Comparable Methods --
|g 7.4.1.3.
|t Performance Evaluation --
|g 7.5.
|t Conclusion --
|g 7.6.
|t Summary --
|t Exercise Questions --
|t Coding Examples.
|
533 |
|
|
|a Electronic reproduction.
|b Ann Arbor, MI
|n Available via World Wide Web.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on August 14, 2019).
|
650 |
|
0 |
|a Image segmentation.
|
650 |
|
0 |
|a Image analysis.
|
650 |
|
0 |
|a Metaheuristics.
|
650 |
|
0 |
|a Heuristic algorithms.
|
700 |
1 |
|
|a Bhattacharyya, Siddhartha,
|d 1975-
|e author.
|
700 |
1 |
|
|a Maulik, Ujjwal,
|e author.
|
710 |
2 |
|
|a ProQuest (Firm)
|
776 |
0 |
8 |
|i Print version:
|a Dey, Sandip, 1977- author.
|t Quantum inspired meta-heuristics for image analysis
|d Hoboken, NJ : Wiley, 2019
|z 9781119488750
|w (DLC) 2019001402
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=5781623
|z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
|t 0
|
907 |
|
|
|a .b33334262
|b 240625
|c 190819
|
998 |
|
|
|a uww
|b
|c m
|d z
|e l
|f eng
|g nju
|h 0
|
917 |
|
|
|a YBP DDA
|
919 |
|
|
|a .ulebk
|b 2017-02-14
|
999 |
f |
f |
|i daaddf3c-bebe-5882-97a9-24339c37bd12
|s 3398a71a-54dd-5fd4-9fa9-f16724203d44
|t 0
|