Neural networks. Part 5, Introduction to real-world machine learning /

"Neural networks form the foundation for deep learning, the most advanced and popular machine learning technique in use today. This course provides an introduction to neural networks. It begins with an overview of a neural network's basic concepts and building blocks - neurons, weights, ac...

Full description

Saved in:
Bibliographic Details
Other Authors: Staglianò, Alessandra (Speaker), Ma, Angie (Speaker), Willis, Gary (Speaker)
Format: Electronic Video
Language:English
Published: [Place of publication not identified] : O'Reilly, [2017]
Subjects:
Online Access:View this video online (unlimited users allowed)

MARC

LEADER 00000cgm a2200000Ii 4500
001 b3380664
005 20201009145819.9
006 m o c
007 cr cna---uuuuu
007 vz czazzu
008 170929s2017 xx 044 o o vleng d
035 |a (OCoLC)1004966453 
035 |a (OCoLC)orpq1004966453 
037 |a CL0500000895  |b Safari Books Online 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UAB 
049 |a STAW 
050 4 |a QA76.87 
100 1 |a Staglianò, Alessandra,  |e speaker. 
245 1 0 |a Neural networks.  |n Part 5,  |p Introduction to real-world machine learning /  |c with Alessandra Staglianò, Angie Ma, and Gary Willis. 
246 3 0 |a Introduction to real-world machine learning 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c [2017] 
300 |a 1 online resource (1 streaming video file (43 min., 16 sec.)) :  |b digital, sound, color 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen (viewed September 28, 2017). 
500 |a Date of publication taken from resource description page. 
500 |a "Part 5 of 6." 
511 0 |a Presenters, Alessandra Staglianò, Angie Ma, and Gary Willis. 
520 |a "Neural networks form the foundation for deep learning, the most advanced and popular machine learning technique in use today. This course provides an introduction to neural networks. It begins with an overview of a neural network's basic concepts and building blocks - neurons, weights, activations, and layers - before explaining how to train one using gradient descent. The optimization technique is explained with a visual example and different issues such as parameter initialization and model validation are discussed. The course covers the different types of neural network architectures, explains the differences between them, and illustrates practical applications for each. Because training a neural network can be very slow, the course will offer up some tricks for speeding up the process and improving results. The course ends with a review of the history of this fascinating field, from its origin to its fall, and then its subsequent rise in modern days. Requirements include a clear understanding of supervised learning and optimization."--Resource description page. 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
700 1 |a Ma, Angie,  |e speaker. 
700 1 |a Willis, Gary,  |e speaker. 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://learning.oreilly.com/videos/~/9781492023975/?ar&orpq&email=^u  |z View this video online (unlimited users allowed)  |t 0 
907 |a .b33806640  |b 201022  |c 190925 
917 |a O'Reilly Safari Learning Platform: Academic edition 
919 |a .ulebk  |b 2020-07-09 
998 |a uww  |b    |c m  |d 2   |e l  |f eng  |g xx   |h 0 
999 f f |i 2416e3c3-4c05-5f77-91c0-109f65468bd9  |s 2888fba1-0f7a-5aa2-a9ec-4c9f1f368321  |t 0