Analytic methods for coagulation-fragmentation models. Volume II /

Saved in:
Bibliographic Details
Main Authors: Banasiak, J. (Author), Lamb, Wilson (Author), Laurençot, Philippe (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : CRC Press, [2020]
Series:Monographs and research notes in mathematics.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 6. Introduction to Volume II
  • 6.1. Introduction
  • 6.2. Chapter Summaries
  • 7. Mathematical Toolbox II
  • 7.1. Weak Topology and Related Results
  • 7.2. Continuous and Compact Embeddings
  • 7.3. Dynamical Systems
  • 7.3.1. Basic Concepts
  • 7.3.2. Stationary Solutions and Fixed-Point Theorems
  • 7.4. Algebraic Inequalities
  • 7.5. Gronwall--Henry Inequality
  • 8. Solvability of Coagulation-Fragmentation Equations
  • 8.1. Coagulation-Fragmentation Equations via Semigroups
  • 8.1.1. Global Classical Solutions of Transport-Coagulation-Fragmentation Equations with Bounded Coagulation Kernels
  • 8.1.2. Global Classical Solutions of Coagulation-Fragmentation Equations with Unbounded Coagulation Kernels
  • 8.2. Coagulation-Fragmentation Equations via Weak Compactness
  • 8.2.1. Truncated Kernels and Basic Estimates
  • 8.2.1.1. Truncated Kernels
  • 8.2.1.2. Weak Stability
  • 8.2.1.3. Lower Bounds for Coagulation
  • 8.2.1.4. Upper Bounds for Coagulation: Moment Estimates
  • 8.2.1.5. Upper Bounds for Coagulation: Lp-estimates
  • 8.2.1.6. Positivity
  • 8.2.2. Mass-Conserving Solutions
  • 8.2.2.1. Coagulation Kernel with Linear Growth
  • 8.2.2.2. Coagulation Kernel with Linear Growth and Integrable Daughter Distribution Function b
  • 8.2.2.3. Coagulation Kernel with Linear Growth and Non-integrable Daughter Distribution Function b
  • 8.2.2.4. Strong Fragmentation
  • 8.2.3. Weak Solutions
  • 8.2.4. Singular Coagulation Coefficients
  • 8.2.5. Uniqueness
  • 9. Gelation and Shattering
  • 9.1. Gelation
  • 9.2. Instantaneous Gelation
  • 9.3. Shattering
  • 10. Long-Term Behaviour
  • 10.1. Continuous Fragmentation
  • 10.1.1. Self-Similar Profiles
  • 10.1.2. Convergence and Decay Rates
  • 10.1.2.1. Convergence
  • 10.1.2.2. Decay Rates
  • 10.2. Coagulation
  • 10.2.1. Constant Coagulation Kernel k(x, y) = 2
  • 10.2.2. Additive Coagulation Kernel k+(x, y) = x + y
  • 10.2.3. Diagonal Coagulation Kernel k(x, y) = r(x)δx-y
  • 10.2.4. Mass-Conserving Self-Similar Profiles
  • 10.2.4.1. Discrete Approximation Scheme
  • 10.2.4.2. Moment Estimates
  • 10.2.4.3. Integrability Estimates
  • 10.2.4.4. Existence of Mass-Conserving Self-Similar Profiles
  • 10.2.5. Regularity of Mass-Conserving Self-Similar Profiles
  • 10.2.6. Other Self-Similar Profiles
  • 10.2.6.1. Self-Similar Profiles: λ = 1
  • 10.2.6.2. Self-Similar Profiles with Infinite Mass
  • 10.3. Coagulation-Fragmentation
  • 10.3.1. Aizenman--Bak Result for Constant Coefficients
  • 10.3.2. Detailed Balance
  • 10.3.2.1. Existence
  • 10.3.2.2. Entropy Identity
  • 10.3.2.3. Stabilisation
  • 10.3.2.4. Convergence
  • 10.3.3. Stationary Solutions
  • 10.3.3.1. Additive Coagulation and Constant Fragmentation
  • 10.3.3.2. Singular Coagulation and Strong Fragmentation
  • 10.3.3.3. Other Stationary Solutions
  • 10.3.4. Mass-Conserving Self-Similar Solutions
  • 11. Miscellanea
  • 11.1. Becker--Doring Equations
  • 11.1.1. Well-Posedness
  • 11.1.2. Long-Term Asymptotics
  • 11.1.3. Decay Rates
  • 11.2. Coagulation-Fragmentation with Diffusion.