Time-domain electromagnetic reciprocity in antenna modeling /

Saved in:
Bibliographic Details
Main Author: Å tumpf, Martin (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
Published: Hoboken, New Jersey : Wiley, [2020]
Series:IEEE Press series on electromagnetic wave theory.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1. Introduction
  • 1.1. Synopsis
  • 1.2. Prerequisites
  • 1.2.1. One-Sided Laplace Transformation
  • 1.2.2. Lorentz's Reciprocity Theorem
  • 2. Cagniard-Dehoop Method Of Moments For Thin-Wire Antennas
  • 2.1. Problem Description
  • 2.2. Problem Formulation
  • 2.3. Problem Solution
  • 2.4. Antenna Excitation
  • 2.4.1. Plane-Wave Excitation
  • 2.4.2. Delta-Gap Excitation
  • Illustrative Example
  • 3. Pulsed Em Mutual Coupling Between Parallel Wire Antennas
  • 3.1. Problem Description
  • 3.2. Problem Formulation
  • 3.3. Problem Solution
  • 4. Incorporating Wire-Antenna Losses
  • 4.1. Modification of the Impedance Matrix
  • 5. Connecting A Lumped Element To The Wire Antenna
  • 5.1. Modification of the Impedance Matrix
  • 6. Pulsed EM Radiation From A Straight Wire Antenna
  • 6.1. Problem Description
  • 6.2. Source-Type Representations for the TD Radiated EM Fields
  • 6.3. Far-Field TD Radiation Characteristics
  • 7. EM Reciprocity Based Calculation Of Td Radiation Characteristics
  • 7.1. Problem Description
  • 7.2. Problem Solution
  • Illustrative Numerical Example
  • 8. Influence Of A Wire Scatterer On A Transmitting Wire Antenna
  • 8.1. Problem Description
  • 8.2. Problem Solution
  • Illustrative Numerical Example
  • 9. Influence Of A Lumped Load On EM Scattering Of A Receiving Wire Antenna
  • 9.1. Problem Description
  • 9.2. Problem Solution
  • Illustrative Numerical Example
  • 10. Influence Of A Wire Scatterer On A Receiving Wire Antenna
  • 10.1. Problem Description
  • 10.2. Problem Solution
  • Illustrative Numerical Example
  • 11. EM-Field Coupling To Transmission Lines
  • 11.1. Introduction
  • 11.2. Problem Description
  • 11.3. EM-Field-To-Line Interaction
  • 11.4. Relation to Agrawal Coupling Model
  • 11.5. Alternative Coupling Models Based on EM Reciprocity
  • 11.5.1. EM Plane-Wave Incidence
  • 11.5.2. Known EM Source Distribution
  • 12. EM Plane-Wave Induced Thevenin's Voltage On Transmission Lines
  • 12.1. Transmission Line Above the Perfect Ground
  • 12.1.1. Thevenin's Voltage at x = xx
  • 12.1.2. Thevenin's Voltage at x = x2
  • 12.2. Narrow Trace on a Grounded Slab
  • 12.2.1. Thevenin's Voltage at x = xx
  • 12.2.2. Thevenin's Voltage atx = x2
  • Illustrative Numerical Example
  • 13. Ved-Induced Thevenin's Voltage On Transmission Lines
  • 13.1. Transmission Line Above the Perfect Ground
  • 13.1.1. Excitation EM Fields
  • 13.1.2. Thevenin's Voltage at x = x1
  • 13.1.3. Thevenin's Voltage at x = x2
  • 13.2. Influence of Finite Ground Conductivity
  • 13.2.1. Excitation EM Fields
  • 13.2.2. Correction to Thevenin's Voltage at x = x1
  • 13.2.3. Correction to Thevenin's Voltage at x = x2
  • Illustrative Numerical Example
  • 14. Cagniard-Dehoop Method Of Moments For Planar-Strip Antennas
  • 14.1. Problem Description
  • 14.2. Problem Formulation
  • 14.3. Problem Solution
  • 14.4. Antenna Excitation
  • 14.4.1. Plane-Wave Excitation
  • 14.4.2. Delta-Gap Excitation
  • 14.5. Extension to a Wide-Strip Antenna
  • Illustrative Numerical Example
  • 15. Incorporating Strip-Antenna Losses
  • 15.1. Modification of the Impeditivity Matrix
  • 15.1.1. Strip with Conductive Properties
  • 15.1.2. Strip with Dielectric Properties
  • 15.1.3. Strip with Conductive and Dielectric Properties
  • 15.1.4. Strip with Drude-Type Dispersion
  • 16. Connecting A Lumped Element To The Strip Antenna
  • 16.1. Modification of the Impeditivity Matrix
  • 17. Including A Pec Ground Plane
  • 17.1. Problem Description
  • 17.2. Problem Formulation
  • 17.3. Problem Solution
  • 17.4. Antenna Excitation
  • Illustrative Numerical Example
  • A. GREEN'S FUNCTION REPRESENTATION IN AN UNBOUNDED, HOMOGENEOUS, AND ISOTROPIC MEDIUM
  • B. TIME-DOMAIN RESPONSE OF AN INFINITE CYLINDRICAL ANTENNA
  • B.1. Transform-Domain Solution
  • B.2. Time-Domain Solution
  • C. IMPEDANCE MATRIX
  • C.1. Generic Integral IA
  • C.2. Generic Integral IB
  • C.3. TD Impedance Matrix Elements
  • D. MUTUAL-IMPEDANCE MATRIX
  • D.1. Generic Integral JA
  • D.2. Generic Integral JB
  • D.3. TD Mutual-Impedance Matrix Elements
  • E. INTERNAL IMPEDANCE OF A SOLID WIRE
  • F. VED-INDUCED EM COUPLING TO TRANSMISSION LINES
  • - GENERIC INTEGRALS
  • F.1. Generic Integral I
  • F.2. Generic Integral J
  • F.3. Generic Integral K.
  • G. IMPEDITIVITY MATRIX
  • G.1. Generic Integral J
  • G.1.1. Generic Integral JA
  • G.1.2. Generic Integral JB
  • H. RECURSIVE CONVOLUTION METHOD AND ITS IMPLEMENTATION
  • H.1. Convolution-Integral Representation
  • H.2. Illustrative Example
  • H.3. Implementation of the Recursive Convolution Method
  • I. CONDUCTANCE AND CAPACITANCE OF A THIN HIGH-CONTRAST LAYER
  • J. GROUND-PLANE IMPEDITIVITY MATRIX
  • J.1. Generic Integral J
  • J.1.1. Generic Integral IA
  • J.1.2. Generic Integral IB
  • K. IMPLEMENTATION OF CDH-MOM FOR THIN-WIRE ANTENNAS
  • K.1. Setting Space-time Input Parameters
  • K.2. Antenna Excitation
  • K.2.1. Plane-Wave Excitation
  • K.2.2. Delta-Gap Excitation
  • K.3. Impedance Matrix
  • K.4. Marching-on-in-Time Solution Procedure
  • K.5. Calculation of Far-Field TD Radiation Characteristics
  • L. IMPLEMENTATION OF VED-INDUCED THEVENIN'S VOLTAGES ON A TRANSMISSION LINE
  • L.1. Setting Space-Time Input Parameters
  • L.2. Setting Excitation Parameters
  • L.3. Calculating Thevenin's Voltages
  • L.4. Incorporating Ground Losses
  • M. IMPLEMENTATION OF CDH-MOM FOR NARROW-STRIP ANTENNAS
  • M.1. Setting Space-Time Input Parameters
  • M.2. Delta-Gap Antenna Excitation
  • M.3. Impeditivity Matrix
  • M.4. Marching-on-in-Time Solution Procedure.