The Mathematics of Egypt, Mesopotamia, China, India, and Islam A Sourcebook.

In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to...

Full description

Saved in:
Bibliographic Details
Main Author: Katz, Victor J.
Other Authors: Imhausen, Annette, Robson, Eleanor, Dauben, Joseph Warren, Plofker, Kim, Berggren, J. Lennart
Format: Electronic eBook
Language:English
Published: Princeton : Princeton University Press, 2007.
Subjects:
Online Access:Connect to this title online (unlimited users allowed)

MARC

LEADER 00000cam a2200000Mu 4500
001 b3810360
003 CStclU
005 20240524050223.0
006 m o d
007 cr |||||||||||
008 210731s2007 nju o ||| 0 eng d
020 |a 9780691235394  |q (electronic bk.) 
020 |a 0691235392  |q (electronic bk.) 
035 |a (OCoLC)jeba1262373986 
035 |a (OCoLC)1262373986 
037 |a 22573/ctv1qg27qg  |b JSTOR 
040 |a EBLCP  |b eng  |c EBLCP  |d JSTOR  |d OCLCO  |d YDX  |d OCLCF  |d VT2  |d OCLCO  |d YWS  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a STAW 
050 4 |a QA22  |b .M3735 2007eb 
084 |a 31.01  |2 bcl 
100 1 |a Katz, Victor J. 
245 1 4 |a The Mathematics of Egypt, Mesopotamia, China, India, and Islam  |h [electronic resource] :  |b A Sourcebook. 
260 |a Princeton :  |b Princeton University Press,  |c 2007. 
300 |a 1 online resource (704 p.) 
500 |a Description based upon print version of record. 
505 0 0 |t Preface --  |t Permissions --  |t Introduction --  |g ch. 1.  |t Egyptian mathematics /  |r Annette Imhausen --  |t Preliminary remarks --  |g 1.  |t Introduction --  |g a.  |t Invention of writing and number systems --  |g b.  |t Arithmetic --  |g c.  |t Metrology --  |g 2.  |t Hieratic mathematical texts --  |g a.  |t Table texts --  |g b.  |t Problem texts --  |g 3.  |t Mathematics in administrative texts --  |g a.  |t Middle Kingdom texts : the Reisner papyri --  |g b.  |t New Kingdom texts : Ostraca from Deir el Medina --  |g 4.  |t Mathematics in the Graeco-Roman period --  |g a.  |t Context --  |g b.  |t Table texts --  |g c.  |t Problem texts --  |g 5.  |t Appendices --  |g a.  |t Glossary of Egyptian terms --  |g b.  |t Sources --  |g c.  |t References 
505 0 0 |g Ch. 2.  |t Mesopotamian mathematics /  |r Eleanor Robson --  |g 1.  |t Introduction --  |g a.  |t Mesopotamian mathematics through Western eyes --  |g b.  |t Mathematics and scribal culture in ancient Iraq --  |g c.  |t From tablet to translation --  |g d.  |t Explananda --  |g 2.  |t The long third millennium, c. 3200-2000 BCE --  |g a.  |t Uruk in the late fourth millennium --  |g b.  |t Shuruppag in the mid-third millennium --  |g c.  |t Nippur and Girsu in the twenty-fourth century BCE --  |g d.  |t Umma and Girsu in the twenty-first century BCE --  |g 3.  |t The old Babylonian period, c. 2000-1600 BCE --  |g a.  |t Arithmetical and metrological tables --  |g b.  |t Mathematical problems --  |g c.  |t Rough work and reference lists --  |g 4.  |t Later Mesopotamia, c. 1400-150 BCE --  |g 5.  |t Appendices --  |g a.  |t Sources --  |g b.  |t References 
505 0 0 |g Ch. 3.  |t Chinese mathematics /  |r Joseph W. Dauben --  |t Preliminary remarks --  |g 1.  |t China : the historical and social context --  |g 2.  |t Methods and procedures : counting rods, the "out-in" principle --  |g 3.  |t Recent archaeological discoveries : the earliest yet-known bamboo text --  |g 4.  |t Mathematics and astronomy : the Zhou bi suan jing and right triangles (The Gou-gu or "Pythagorean" theorem) --  |g 5.  |t The Chinese "Euclid", Liu Hui --  |g a.  |t The Nine Chapters --  |g b.  |t The Sea Island Mathematical Classic --  |g 6.  |t The "Ten Classics" of ancient Chinese mathematics --  |g a.  |t Numbers and arithmetic : the Mathematical Classic of Master Sun --  |g b.  |t The Mathematical Classic of Zhang Qiujian --  |g 7.  |t Outstanding achievements of the Song and Yuan dynasties (960-1368 CE) --  |g a.  |t Qin Jiushao --  |g b.  |t Li Zhi (Li Ye) --  |g c.  |t Yang Hui -- d. Zhu Shijie --  |g 8.  |t Matteo Ricci and Xu Guangxi, "prefaces" to the first Chinese edition of Euclid's Elements (1607) --  |g 9.  |t Conclusion --  |g 10.  |t Appendices --  |g a.  |t Sources --  |g b.  |t Bibliographical guides --  |g c.  |t References 
505 0 0 |g Ch. 4.  |t Mathematics in India /  |r Kim Plofker --  |g 1.  |t Introduction : origins of Indian mathematics --  |g 2.  |t Mathematical texts in ancient India --  |g a.  |t The Vedas --  |g b.  |t The Śulbasūtras --  |g c.  |t Mathematics in other ancient texts --  |g d.  |t Number systems and numerals --  |g 3.  |t Evolution of mathematics in medieval India --  |g a.  |t Mathematics chapters in Siddhānta texts --  |g b.  |t Transmission of mathematical ideas to the Islamic world --  |g c.  |t Textbooks on mathematics as a separate subject --  |g d.  |t The audience for mathematics education --  |g e.  |t Specialized mathematics : astronomical and cosmological problems --  |g 4.  |t The Kerala school --  |g a.  |t Mādhava, his work, and his school --  |g b.  |t Infinite series and the role of demonstrations --  |g c.  |t Other mathematical interests in the Kerala school --  |g 5.  |t Continuity and transition in the second millennium --  |g a.  |t The ongoing development of Sanskrit mathematics --  |g b.  |t Scientific exchanges at the courts of Delhi and Jaipur --  |g c.  |t Assimilation of ideas from Islam ; mathematical table texts --  |g 6.  |t Encounters with modern Western mathematics --  |g a.  |t Early exchanges with European mathematics --  |g b.  |t European versus "native" mathematics education in British India --  |g c.  |t Assimilation into modern global mathematics --  |g 7.  |t Appendices --  |g a.  |t Sources --  |g b.  |t References 
505 0 0 |g Ch. 5.  |t Mathematics in medieval Islam /  |r J. Lennart Berggren --  |g 1.  |t Introduction --  |g 2.  |t Appropriation of the ancient heritage --  |g 3.  |t Arithmetic --  |g 4.  |t Algebra --  |g 5.  |t Number theory --  |g 6.  |t Geometry --  |g a.  |t Theoretical geometry --  |g b.  |t Practical geometry --  |g 7.  |t Trigonometry --  |g 8.  |t Combinatorics --  |g 9.  |t On mathematics --  |g 10.  |t Appendices --  |g a.  |t Sources --  |g b.  |t References --  |t Contributors --  |t Index. 
520 |a In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (Islam)--are experts in their fields. Each author has selected key texts and in many cases provided new translations. The authors have also written substantial section introductions that give an overview of each mathematical culture and explanatory notes that put each selection into context. This authoritative commentary allows readers to understand the sometimes unfamiliar mathematics of these civilizations and the purpose and significance of each text. Addressing a critical gap in the mathematics literature in English, this book is an essential resource for anyone with at least an undergraduate degree in mathematics who wants to learn about non-Western mathematical developments and how they helped shape and enrich world mathematics. The book is also an indispensable guide for mathematics teachers who want to use non-Western mathematical ideas in the classroom. 
650 0 |a Mathematics, Ancient  |v Sources. 
650 0 |a Mathematics  |x History  |v Sources. 
650 7 |a Mathematics  |2 fast 
650 7 |a Mathematics, Ancient  |2 fast 
655 7 |a History  |2 fast 
655 7 |a Sources  |2 fast 
700 1 |a Imhausen, Annette. 
700 1 |a Robson, Eleanor. 
700 1 |a Dauben, Joseph Warren. 
700 1 |a Plofker, Kim. 
700 1 |a Berggren, J. Lennart. 
776 0 8 |i Print version:  |a Katz, Victor J.  |t The Mathematics of Egypt, Mesopotamia, China, India, and Islam  |d Princeton : Princeton University Press,c2007  |z 9780691114859 
856 4 0 |u https://login.libproxy.scu.edu/login?url=https://www.jstor.org/stable/10.2307/j.ctv1qgnq84  |z Connect to this title online (unlimited users allowed)  |t 0 
907 |a .b38103606  |b 240528  |c 210830 
998 |a uww  |b    |c m  |d z   |e l  |f eng  |g nju  |h 4 
919 |a .ulebk  |b 2024-02-15 
917 |a JSTOR EBA Program 
999 f f |i b6926b5e-f538-5c1d-a072-9002940dab60  |s b891e002-0bb5-5265-b400-4bcb6663becc  |t 0