Solar-to-chemical conversion : photocatalytic and photoelectrochemcial processes /

Saved in:
Bibliographic Details
Corporate Author: ProQuest (Firm)
Other Authors: Sun, Hongqi (Editor)
Format: Electronic eBook
Language:English
Published: Weinheim, Germany : Wiley-VCH, [2021]
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)

MARC

LEADER 00000nam a2200000Ii 4500
001 b3824134
003 CStclU
005 20210530151334.7
006 m o d
007 cr cnu---unuuu
008 210315s2021 gw a ob 001 0 eng d
020 |a 9783527825073  |q (electronic bk. : oBook) 
020 |a 352782507X  |q (electronic bk. : oBook) 
020 |a 9783527825097  |q electronic book 
020 |a 3527825096  |q electronic book 
020 |z 3527347186 
020 |z 9783527347186 
035 |a (NhCcYBP)ebc6516143 
040 |a NhCcYBP  |c NhCcYBP 
050 4 |a TJ810  |b .S65 2021 
082 0 4 |a 621.31/24  |2 23 
245 0 0 |a Solar-to-chemical conversion :  |b photocatalytic and photoelectrochemcial processes /  |c edited by Hongqi Sun. 
264 1 |a Weinheim, Germany :  |b Wiley-VCH,  |c [2021] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 0 |a Machine generated contents note:   |g 1.  |t Introduction: A Delicate Collection of Advances in Solar-to-Chemical Conversions /  |r Hongqi Sun --   |g 2.  |t Artificial Photosynthesis and Solar Fuels /  |r Jun Ke --   |g 2.1.  |t Introduction of Solar Fuels --   |g 2.2.  |t Photosynthesis --   |g 2.2.1.  |t Natural Photosynthesis --   |g 2.2.2.  |t Artificial Photosynthesis --   |g 2.3.  |t Principles of Photocatalysis --   |g 2.4.  |t Products of Artificial Photosynthesis --   |g 2.4.1.  |t Hydrocarbons --   |g 2.4.1.1.  |t Methane (CH4) --   |g 2.4.1.2.  |t Methanol (CH3OH) --   |g 2.4.1.3.  |t Formaldehyde (HCHO) --   |g 2.4.1.4.  |t Formic Acid (HCOOH) --   |g 2.4.1.5.  |t C2 Hydrocarbons --   |g 2.4.1.6.  |t Other Hydrocarbons --   |g 2.4.2.  |t Carbon Monoxide (CO) --   |g 2.4.3.  |t Dioxygen (O2) --   |g 2.5.  |t Perspective --   |t Acknowledgments --   |t References --   |g 3.  |t Natural and Artificial Photosynthesis /  |r Dimitrios A. Pantazis --   |g 3.1.  |t Introduction --   |g 3.2.  |t Overview of Natural Photosynthesis --   |g 3.3.  |t Light Harvesting and Excitation Energy Transfer --   |g 3.4.  |t Charge Separation and Electron Transfer --   |g 3.5.  |t Water Oxidation --   |g 3.6.  |t Carbon Fixation --   |g 3.7.  |t Conclusions --   |t References --   |g 4.  |t Photocatalytic Hydrogen Evolution /  |r Yijiao Jiang --   |g 4.1.  |t Introduction --   |g 4.2.  |t Fundamentals of Photocatalytic H2 Evolution --   |g 4.3.  |t Photocatalytic H2 Evolution Under UV Light --   |g 4.3.1.  |t Titanium Dioxide (TiO2)-Based Semiconductors --   |g 4.3.2.  |t Other Types of UV-Responsive Photocatalysts --   |g 4.4.  |t Photocatalytic H2 Evolution Under Visible Light --   |g 4.4.1.  |t Carbon Nitride (C3N4)-Based Semiconductor --   |g 4.4.2.  |t Other Types of Visible-Light-Responsive Photocatalysts --   |g 4.5.  |t Photocatalytic H2 Evolution Under Near-Infrared Light --   |g 4.6.  |t Roles of Sacrificial Reagents and Reaction Pathways --   |g 4.7.  |t Summary and Outlook --   |t References --   |g 5.  |t Photoelectrochemical Hydrogen Evolution /  |r Lianzhou Wang --   |g 5.1.  |t Background of Photoelectrocatalytic Water Splitting --   |g 5.2.  |t Mechanism of Charge Separation and Transfer --   |g 5.3.  |t Strategy for Improving Charge Transfer --   |g 5.3.1.  |t Improving the Charge Transfer in Continuous Film --   |g 5.3.2.  |t Improving the Charge Transfer in Particulate Photoelectrodes --   |g 5.4.  |t Strategy for Improving Electron-Hole Separation --   |g 5.4.1.  |t Heterojunction Formation --   |g 5.4.2.  |t Crystal Facet Control --   |g 5.4.3.  |t Surface Passivation --   |g 5.5.  |t Surface Cocatalyst Design --   |g 5.6.  |t Unbiased PEC Water Splitting --   |g 5.7.  |t Conclusion and Perspective --   |t References --   |g 6.  |t Photocatalytic Oxygen Evolution /  |r Shaobin Wang --   |g 6.1.  |t Introduction --   |g 6.1.1.  |t Configuration of Photocatalytic Water Oxidation --   |g 6.1.2.  |t Mechanism, Thermodynamics, and Kinetics Toward Efficient Oxygen Evolution --   |g 6.2.  |t Homogeneous Photocatalytic Water Oxidation --   |g 6.2.1.  |t Molecular Complexes and Polyoxometalates --   |g 6.2.2.  |t Mechanism Details and the Stability --   |g 6.3.  |t Heterogeneous Photocatalytic Water Oxidation --   |g 6.3.1.  |t Unique Properties of Nanosized Semiconductor System --   |g 6.3.1.1.  |t Quantum Confinement --   |g 6.3.1.2.  |t Localized Surface Plasmon Resonance (LSPR) --   |g 6.3.1.3.  |t Surface Area and Exposed Facet-Enhanced Charge Transfer --   |g 6.3.2.  |t Zero-Dimensional Semiconductor Materials for Photocatalytic Water Oxidation --   |g 6.3.2.1.  |t OD Metal Complexes and Nanoclusters --   |g 6.3.2.2.  |t Metal Oxide Quantum Dots and Nanocrystals --   |g 6.3.3.  |t One-Dimensional Semiconductor Materials for Photocatalytic Water Oxidation --   |g 6.3.4.  |t Two-Dimensional Semiconductor Materials for Photocatalytic Water Oxidation --   |g 6.3.4.1.  |t 2D Metal Oxide Nanosheets for Photocatalytic Water Oxidation --   |g 6.3.4.2.  |t Layered Double Hydroxide (LDH) Nanosheets for Photocatalytic Water Oxidation --   |g 6.3.4.3.  |t Metal-Based Oxyhalide Semiconductors for Photocatalytic Water Oxidation --   |g 6.3.5.  |t LD Semiconductor-Based Hybrids for Photocatalytic Oxygen Evolution --   |g 6.3.5.1.  |t ID-Based (0D/1D and 1D/1D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation --   |g 6.3.5.2.  |t 2D-Based (2D/2D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation --   |g 6.3.5.3.  |t Metal-Free-Based Semiconductors for Water Oxidation --   |g 6.4.  |t Catalytic Active Site-Catalysis Correlation in LD Semiconductors --   |g 6.5.  |t Conclusions and Perspectives --   |t References --   |g 7.  |t Photoelectrochemical Oxygen Evolution /  |r Fumiaki Amano --   |g 7.1.  |t Introduction --   |g 7.2.  |t Honda-Fujishima Effect --   |g 7.3.  |t Factors Affecting the Photoanodic Current --   |g 7.4.  |t Electrode Potentials at Different pH --   |g 7.5.  |t Evaluation of PEC Performance --   |g 7.6.  |t Flat Band Potential and Photocurrent Onset Potential --   |g 1.1.  |t Selection of Materials --   |g 7.8.  |t Enhancement of PEC Properties --   |g 7.8.1.  |t Nanostructuring and Morphology Control --   |g 7.8.2.  |t Donor Doping --   |g 7.8.3.  |t Modification of Photoanode Surface --   |g 7.8.4.  |t Electron-Conductive Materials --   |g 7.9.  |t PEC Device for Water Splitting --   |g 7.10.  |t Conclusions and Outlook --   |t References --   |g 8.  |t Photocatalytic and Photoelectrochemical Overall Water Splitting /  |r Dong Ha Kim --   |g 8.1.  |t Introduction --   |g 8.2.  |t Photocatalytic Overall Water Splitting --   |g 8.2.1.  |t Principles and Mechanism --   |g 8.2.2.  |t Key Performance Indicators --   |g 8.2.3.  |t Materials for One-Step Photoexcitation Toward Overall Water Splitting --   |g 8.2.3.1.  |t Semiconductors --   |g 8.2.3.2.  |t Incorporation of Cocatalysts --   |g 8.2.3.3.  |t Plasmonic Nanostructures --   |g 8.2.4.  |t Hybrid Systems for Two-Step Photoexcitation Toward Overall Water Splitting --   |g 8.2.4.1.  |t Z-Schemes --   |g 8.3.  |t Photoelectrochemical Overall Water Splitting --   |g 8.3.1.  |t Principles and Mechanism --   |g 8.3.2.  |t Key Performance Indicators --   |g 8.3.3.  |t Materials Design --   |g 8.3.3.1.  |t Photoanode Materials --   |g 8.3.3.2.  |t Photocathode Materials --   |g 8.3.4.  |t Unassisted Photoelectrochemical Overall Water Splitting --   |g 8.3.4.1.  |t Photoanode-Photocathode Tandem Cells --   |g 8.3.4.2.  |t Photovoltaic-Photoelectrode Devices --   |g 8.4.  |t Concluding Remarks and Outlook --   |t Acknowledgments --   |t References --   |g 9.  |t Photocatalytic CO2 Reduction /  |r Qibin Liu --   |g 9.1.  |t Introduction --   |g 9.2.  |t Principle of Photocatalytic Reduction of C02 --   |g 9.3.  |t Energy and Mass Transfers in Photocatalytic Reduction of C02 --   |g 9.3.1.  |t Energy Flow from the Concentrator to Reactor --   |g 9.3.2.  |t Energy Flow on the Surface of the Photocatalyst --   |g 9.3.3.  |t Mass Flow in C02 Photocatalytic Reduction --   |g 9.3.4.  |t Product Selectivity in C02 Photocatalytic Reaction --   |g 9.4.  |t Conclusions --   |t Acknowledgments --   |t References --   |g 10.  |t Photoelectrochemical C02 Reduction /  |r Mingbo Wu --   |g 10.1.  |t Introduction --   |g 10.1.1.  |t Introduction of Photoelectrocatalytic Reduction of CO2 --   |g 10.1.2.  |t Principles of Photoelectrocatalytic Reduction of CO2 --   |g 10.1.3.  |t System Configurations of Photoelectrocatalytic Reduction ofC02 --   |g 10.2.  |t PEC CO2 Reduction Principles --   |g 10.2.1.  |t Thermodynamics and Kinetics of CO2 Reduction --   |g 10.2.2.  |t Reaction Conditions --   |g 10.2.2.1.  |t Reaction Temperature and Pressure --   |g 10.2.2.2.  |t Ph Value --   |g 10.2.2.3.  |t Solvent --   |g 10.2.2.4.  |t External Electrical Bias --   |g 10.2.3.  |t Performance Evaluation of PEC CO2 Reduction --   |g 10.2.3.1.  |t Product Evolution Rate and Catalytic Current Density --   |g 10.2.3.2.  |t Turnover Number and Turnover Frequency --   |g 10.2.3.3.  |t Overpotential --   |g 10.2.3.4.  |t Faradaic Efficiency --   |g 10.3.  |t Application of Solar-to-Chemical Energy Conversion in PEC CO2 Reduction --   |g 10.3.1.  |t PEC C02 Reduction on Semiconductors --   |g 10.3.1.1.  |t Oxide Semiconductors --   |g 10.3.1.2.  |t Non-oxide Semiconductors --   |g 10.3.1.3.  |t Chalcogenide Semiconductors --   |g 10.3.2.  |t PEC C02 Reduction on Cocatalyst Systems --   |g 10.3.2.1.  |t Metal Nanoparticles --   |g 10.3.2.2.  |t Metal Complexes --   |g 10.3.3.  |t PEC C02 Reduction on Hybrid Semiconductors --   |g 10.3.3.1.  |t Conductive Polymers --   |g 10.3.3.2.  |t Enzymatic Biocatalysts --   |g 10.3.3.3.  |t Organic Molecules --   |g 10.4.  |t Other Configurations for PEC CO2 Reduction --   |g 10.5.  |t Conclusion and Outlook --   |t Acknowledgments --   |t Conflict of Interest --   |t References --   |g 11.  |t Photocatalytic and Photoelectrochemical Nitrogen Fixation /  |r Hongqi Sun --   |g 11.1.  |t Introduction --   |g 11.2.  |t Fundamental Principles and Present Challenges --   |g 11.2.1.  |t Principles in N2 Reduction for NH3 Production --   |g 11.2.2.  |t Challenges for N2 Reduction to NH3 --   |g 11.3.  |t Strategies for Catalyst Design and Fabrication --   |g 11.3.1.  |t Defect Engineering --   |g 11.3.1.1.  |t Vacancies --   |g 11.3.1.2.  |t Heteroatom Doping --   |g 11.3.1.3.  |t Amorphization --   |g 11.3.2.  |t Structure Engineering --   |g 11.3.2.1.  |t Morphology Regulation --   |g 11.3.2.2.  |t Facet Control --   |g 11.3.3.  |t Interface Engineering --   |g 11.3.4.  |t Heterojunction Engineering --   |g 11.3.5.  |t Co-catalyst Engineering --   |g 11.3.6.  |t Biomimetic Engineering --   |g 11.4.  |t Conclusions and Outlook --   |t References --   |g 12.  |t Photocatalytic Production of Hydrogen Peroxide Using MOF Materials /  |r Hiromi Yamashita --   |g 12.1.  |t Introduction --   |g 12.2.  |t Photocatalytic H2O2 Production Through Selective Two-Electron Reduction of O2 Utilizing NiO/MIL-125-NH2 --   |g 12.3.  |t Two-Phase System Utilizing Linker-Alkylated Hydrophobic MIL-125-NH2 for Photocatalytic H2O2 Production --   |g 12.4.  |t Ti Cluster-Alkylated Hydrophobic MIL-125-NH, for Photocatalytic H2O2 Production in Two-Phase System --   |g 12.5.  |t Conclusion and Outlooks --   |t Reference --   |g 13.  |t Photocatalytic and Photoelectrochemical Reforming of Methane /  |r Hongqi Sun --   |g 13.1.  |t Introduction --   |g 13.2.  |t Photo-Mediated Processes --   |g 13.3.  |t Differences Between Photo-Assisted Catalysis and Thermocatalysis --   |g 13.3.1.  |t Catalyst Involved --   |g 13.3.2.  |t Reactors --   |g 13.3.3.  |t Mechanism --   |g 13.3.4.  |t Equations for Quantum Efficiency --   |g 13.4.  |t Reactions of Methane Conversion via Photo-Assisted Catalysis --   |g 13.4.1.  |t Methane Dry Reforming --   |g 13.4.2.  |t Methane Steam Reforming --   |g 13.4.3.  |t Methane Coupling --   |g 13.4.4.  |t Methane Oxidation --   |g 13.4.5.  |t Methane Dehydroaromatization --   |g 13.5.  |t Conclusions and Perspectives --   |t Acknowledgment --   |t References -- 
505 0 0 |a Contents note continued:   |g 14.  |t Photocatalytic and Photoelectrochemical Reforming of Biomass /  |r Bing-Jie Ni --   |g 14.1.  |t Introduction --   |g 14.2.  |t Fundamentals of Photocatalytic and Photoelectrochemical Processes --   |g 14.2.1.  |t Photocatalytic Process --   |g 14.2.2.  |t Photoelectrochemical Process --   |g 14.3.  |t Photocatalytic Reforming of Biomass --   |g 14.3.1.  |t Photocatalytic Reforming of Lignin --   |g 14.3.2.  |t Photocatalytic Reforming of Carbohydrates --   |g 14.3.3.  |t Photocatalytic Reforming of Native Lignocellulose --   |g 14.3.4.  |t Photocatalytic Reforming of Triglycerides and Glycerol --   |g 14.4.  |t Photoelectrochemical Reforming of Biomass --   |g 14.4.1.  |t Photoelectrochemical Conversion of Biomass to Produce Electricity --   |g 14.4.2.  |t Photoelectrochemical Conversion of Biomass to Produce Hydrogen --   |g 14.4.3.  |t Photoelectrochemical Conversion of Biomass to Produce Chemicals --   |g 14.5.  |t Conclusion Remarks and Perspectives --   |t Acknowledgments --   |t References --   |g 15.  |t Reactors, Fundamentals, and Engineering Aspects for Photocatalytic and Photoelectrochemical Systems /  |r Siang-Piao Chai --   |g 15.1.  |t Fundamental Mechanisms of Photocatalytic and PEC Processes --   |g 15.1.1.  |t Rationales of Photocatalytic Systems --   |g 15.1.1.1.  |t Photocatalytic Water Splitting --   |g 15.1.1.2.  |t Photocatalytic CO2 reduction --   |g 15.1.2.  |t Rationales of PEC Systems --   |g 15.2.  |t Reactor Design and Configuration --   |g 15.2.1.  |t Reactors for Photocatalytic Systems --   |g 15.2.1.1.  |t Reactors for Photocatalytic Water Splitting --   |g 15.2.1.2.  |t Reactors for Photocatalytic CO2 Reduction --   |g 15.2.2.  |t Reactors for PEC Systems --   |g 15.3.  |t Engineering Aspects of Photocatalytic and PEC Processes --   |g 15.3.1.  |t Photocatalyst Sheets: Scaling-up of Photocatalytic Water Splitting --   |g 15.3.2.  |t Monolithic Devices: Wireless Approach of PEC Reaction --   |g 15.4.  |t Conclusions and Outlook --   |t Acknowledgments --   |t List of Abbreviations --   |t References --   |g 16.  |t Prospects of Solar Fuels /  |r Hongqi Sun. 
533 |a Electronic reproduction.  |b Ann Arbor, MI  |n Available via World Wide Web. 
588 |a Description based on online resource; title from digital title page (viewed on April 27, 2021). 
650 0 |a Solar energy. 
650 0 |a Energy conversion. 
700 1 |a Sun, Hongqi,  |e editor. 
710 2 |a ProQuest (Firm) 
776 0 8 |c Original  |z 3527347186  |z 9783527347186 
856 4 0 |u https://ebookcentral.proquest.com/lib/santaclara/detail.action?docID=6516143  |z Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)  |t 0 
907 |a .b38241341  |b 211018  |c 211018 
998 |a uww  |b    |c m  |d z   |e l  |f eng  |g gw   |h 0 
917 |a GOBI ProQuest DDA 
919 |a .ulebk  |b 2020-07-09 
999 f f |i 43e88059-0dcc-50b3-afa0-9b1ab25758ed  |s b448752c-3d94-51b5-a6bf-f446d8deca32  |t 0