Machine learning and cognitive computing for mobile communications and wireless networks /
Saved in:
Corporate Author: | |
---|---|
Other Authors: | , , , |
Format: | Electronic eBook |
Language: | English |
Published: |
Hoboken, NJ :
John Wiley & Sons, Inc.,
2020.
|
Subjects: | |
Online Access: | Connect to this title online (unlimited simultaneous users allowed; 325 uses per year) |
Table of Contents:
- Machine generated contents note: 1. Machine Learning Architecture and Framework / Ajay Shankar Singh
- 1.1. Introduction
- 1.2. Machine Learning Algorithms
- 1.2.1. Regression
- 1.2.2. Linear Regression
- 1.2.3. Support Vector Machine
- 1.2.4. Linear Classifiers
- 1.2.5. SVM Applications
- 1.2.6. Naive Bayes Classification
- 1.2.7. Random Forest
- 1.2.8. K-Nearest Neighbor (KNN)
- 1.2.9. Principal Component Analysis (PCA)
- 1.2.10. K-Means Clustering
- 1.3. Business Use Cases
- 1.4. ML Architecture Data Acquisition
- 1.5. Latest Application of Machine Learning
- 1.5.1. Image Identification
- 1.5.2. Sentiment Analysis
- 1.5.3. News Classification
- 1.5.4. Spam Filtering and Email Classification
- 1.5.5. Speech Recognition
- 1.5.6. Detection of Cyber Crime
- 1.5.7. Classification
- 1.5.8. Author Identification and Prediction
- 1.5.9. Services of Social Media
- 1.5.10. Medical Services
- 1.5.11. Recommendation for Products and Services
- 1.5.11.1. Machine Learning in Education
- 1.5.11.2. Machine Learning in Search Engine
- 1.5.11.3. Machine Learning in Digital Marketing
- 1.5.11.4. Machine Learning in Healthcare
- 1.6. Future of Machine Learning
- 1.7. Conclusion
- References
- 2. Cognitive Computing: Architecture, Technologies and Intelligent Applications / Akansha Singh
- 2.1. Introduction
- 2.1. Components of a Cognitive Computing System
- 2.3. Subjective Computing Versus Computerized Reasoning
- 2.4. Cognitive Architectures
- 2.5. Subjective Architectures and HCI
- 2.6. Cognitive Design and Evaluation
- 2.6.1. Architectures Conceived in the 1940s Can't Handle the Data of 2020
- 2.7. Cognitive Technology Mines Wealth in Masses of Information
- 2.7.1. Technology Is Only as Strong as Its Flexible, Secure Foundation
- 2.8. Cognitive Computing: Overview
- 2.9. Future of Cognitive Computing
- References
- 3. Deep Reinforcement Learning for Wireless Network / Krishna Kant Singh
- 3.1. Introduction
- 3.2. Related Work
- 3.3. Machine Learning to Deep Learning
- 3.3.1. Advance Machine Learning Techniques
- 3.3.1.1. Deep Learning
- 3.3.2. Deep Reinforcement Learning (DRL)
- 3.3.2.1. Q-Learning
- 3.3.2.2. Multi-Armed Bandit Learning (MABL)
- 3.3.2.3. Actor-Critic Learning (ACL)
- 3.3.2.4. Joint Utility and Strategy Estimation Based Learning
- 3.4. Applications of Machine Learning Models in Wireless Communication
- 3.4.1. Regression, KNN and SVM Models for Wireless
- 3.4.2. Bayesian Learning for Cognitive Radio
- 3.4.3. Deep Learning in Wireless Network
- 3.4.4. Deep Reinforcement Learning in Wireless Network
- 3.4.5. Traffic Engineering and Routing
- 3.4.6. Resource Sharing and Scheduling
- 3.4.7. Power Control and Data Collection
- 3.5. Conclusion
- References
- 4. Cognitive Computing for Smart Communication / Aman Jatain
- 4.1. Introduction
- 4.2. Cognitive Computing Evolution
- 4.3. Characteristics of Cognitive Computing
- 4.4. Basic Architecture
- 4.4.1. Cognitive Computing and Communication
- 4.5. Resource Management Based on Cognitive Radios
- 4.6. Designing 5G Smart Communication with Cognitive Computing and AI
- 4.6.1. Physical Layer Design Based on Reinforcement Learning
- 4.7. Advanced Wireless Signal Processing Based on Deep Learning
- 4.7.1. Modulation
- 4.7.2. Deep Learning for Channel Decoding
- 4.7.3. Detection Using Deep Learning
- 4.8. Applications of Cognition-Based Wireless Communication
- 4.8.1. Smart Surveillance Networks for Public Safety
- 4.8.2. Cognitive Health Care Systems
- 4.9. Conclusion
- References
- 5. Spectrum Sensing and Allocation Schemes for Cognitive Radio / Rajeev Agrawal
- 5.1. Foundation and Principle of Cognitive Radio
- 5.2. Spectrum Sensing for Cognitive Radio Networks
- 5.3. Classification of Spectrum Sensing Techniques
- 5.4. Energy Detection
- 5.5. Matched Filter Detection
- 5.6. Cyclo-Stationary Detection
- 5.7. Euclidean Distance-Based Detection
- 5.8. Spectrum Allocation for Cognitive Radio Networks
- 5.9. Challenges in Spectrum Allocation
- 5.9.1. Spectrum and Network Heterogeneity
- 5.9.2. Issues and Challenges
- 5.10. Future Scope in Spectrum Allocation
- References
- 6. Significance of Wireless Technology in Internet of Things (IoT) / K. K. Mishra
- 6.1. Introduction
- 6.1.1. Internet of Things: A Historical Background 13
- 6.1.2. Internet of Things: Overview, Definition, and Understanding
- 6.1.3. Internet of Things: Existing and Future Scopes
- 6.2. Overview of the Hardware Components of IoT
- 6.2.1. IoT Hardware Components: Development Boards/Platforms
- 6.2.1.1. Arduino
- 6.2.1.2. Raspberry Pi
- 6.2.1.3. BeagleBone
- 6.2.2. IoT Hardware Components: Transducer
- 6.2.2.1. Sensors
- 6.2.2.2. Actuators
- 6.3. Wireless Technology in IoT
- 6.3.1. Topology
- 6.3.1.1. Mesh Topology
- 6.3.1.2. Star Topology
- 6.3.1.3. Point-to-Point Topology
- 6.3.2. IoT Networks
- 6.3.2.1. Nano Network
- 6.3.2.2. Near-Field Communication (NFC) Network
- 6.3.2.3. Body Area Network (BAN)
- 6.3.2.4. Personal Area Network (PAN)
- 6.3.2.5. Local Area Network (LAN)
- 6.3.2.6. Campus/Corporate Area Network (CAN)
- 6.3.2.7. Metropolitan Area Network (MAN)
- 6.3.2.8. Wide Area Network (WAN)
- 6.3.3. IoT Connections
- 6.3.3.1. Device-to-Device (D2D)/Machine-to-Machine (M2M)
- 6.3.3.2. Machine-to-Gateway/Router (M2G/R)
- 6.3.3.3. Gateway/Router-to-Data System (G/R2DS)
- 6.3.3.4. Data System to Data System (DS2DS)
- 6.3.4. IoT Protocols/Standards
- 6.3.4.1. Network Protocols for IoT
- 6.3.4.2. Data Protocols for IoT
- 6.4. Conclusion
- References
- 7. Architectures and Protocols for Next-Generation Cognitive Networking / R. Karthika
- 7.1. Introduction
- 7.1.1. Primary Network (Licensed Network)
- 7.1.2. CR Network (Unlicensed Network)
- 7.2. Cognitive Radio Network Technologies and Applications
- 7.2.1. Classes of CR
- 7.2.2. Next Generation (xG) of CR Applications
- 7.3. Cognitive Computing: Architecture, Technologies, and Intelligent Applications
- 7.3.1. CR Physical Architecture
- 7.4. Functionalities of CR in NeXt Generation (xG) Networks
- 7.5. Spectrum Sensing
- 7.5.1. Spectrum Decision
- 7.5.2. Spectrum Mobility
- 7.5.3. CR Network Functions
- 7.6. Cognitive Computing for Smart Communications
- 7.6.1. CR Technologies
- 7.7. Spectrum Allocation in Cognitive Radio
- 7.8. Cooperative and Cognitive Network
- 7.8.1. Cooperative Centralized Coordinated
- 7.8.2. Cooperative Decentralized (Distributed) Coordinated and Uncoordinated
- References
- 8. Analysis of Peak-to-Average Power Ratio in OFDM Systems Using Cognitive Radio Technology / Vetrivelan Ponnusamy
- 8.1. Introduction
- 8.2. OFDM Systems
- 8.3. Peak-to-Average Power Ratio
- 8.4. Cognitive Radio (CR)
- 8.5. Related Works
- 8.6. Neural Network System Model
- 8.7. Complexity Examination
- 8.8. PAPR and BER Examination
- 8.9. Performance Evaluation
- 8.10. Results and Discussions
- 8.11. Conclusion
- References
- 9. Threshold-Based Optimization Energy-Efficient Routing Technique in Heterogeneous Wireless Sensor Networks / Samayveer Singh
- 9.1. Introduction
- 9.2. Literature Review
- 9.3. System Model
- 9.3.1. Four-Level Heterogeneous Network Model
- 9.3.2. Energy Dissipation Radio Model
- 9.4. Proposed Work
- 9.4.1. Optimum Cluster Head Election of the Proposed Protocol
- 9.4.2. Information Congregation and Communication Process Based on Chaining System for Intra and Inter-Cluster Communication
- 9.4.3. Complete Working Process of the Proposed Method
- 9.5. Simulation Results and Discussions
- 9.5.1. Network Lifetime and Stability Period
- 9.5.2. Network Outstanding Energy
- 9.5.3. Throughput
- 9.5.4. Comparative Analysis of the Level-4 Network Protocols
- 9.6. Conclusion
- References
- 10. Efficacy of Big Data Application in Smart Cities / Pranati Rakshit
- 10.1. Introduction
- 10.1.1. Characteristics of Big Data
- 10.1.1.1. Velocity
- 10.1.1.2. Volume
- 10.1.1.3. Value
- 10.1.1.4. Variety
- 10.1.1.5. Veracity
- 10.1.2. Definition of Smart Cities
- 10.2. Types of Data in Big Data
- 10.2.1. Structured Data
- 10.2.2. Unstructured Data
- 10.2.3. Semi-Structured Data
- 10.3. Big Data Technologies
- 10.3.1. Apache Hadoop
- 10.3.2. HDFS
- 10.3.3. Spark
- 10.3.4. Microsoft HDInsight
- 10.3.5. NoSQL
- 10.3.6. Hive
- 10.3.7. Sqoop
- 10.3.8. R
- 10.3.9. Data Lakes
- 10.4. Data Source for Big Data
- 10.4.1. Media
- 10.4.2. Cloud
- 10.4.3. Web
- 10.4.4. IOT
- 10.4.5. Databases as a Big Data Source
- 10.4.6. Hidden Big Data Sources
- 10.4.6.1. Email
- 10.4.6.2. Social Media
- 10.4.6.3. Open Data
- 10.4.6.4. Sensor Data
- 10.4.7. Application-Oriented Big Data Source for a Smart City
- 10.4.7.1. Healthcare
- 10.4.7.2. Transportation
- 10.4.7.3. Education
- 10.5. Components of a Smart City
- 10.5.1. Smart Infrastructure
- 10.5.1.1. Intelligent Lighting
- 10.5.1.2. Modern Parking Systems
- 10.5.1.3. Associated Charging Points
- 10.5.2. Smart Buildings and Belongings
- 10.5.2.1. Safety and Security Systems
- 10.5.2.2. Smart Sprinkler Systems for Gardens
- 10.5.2.3. Smart Heating and Ventilation
- 10.5.3. Smart Industrial Environment
- 10.5.4. Smart City Services
- 10.5.4.1. Smart Stalls
- Contents note continued: 10.5.4.2. Monitoring of Risky Areas
- 10.5.4.3. Public Safety
- 10.5.4.4. Fire/Explosion Management
- 10.5.4.5. Automatic Health-Care Delivery
- 10.5.5. Smart Energy Management
- 10.5.5.1. Smart Grid
- 10.5.5.2. Intelligent Meters
- 10.5.6. Smart Water Management
- 10.5.7. Smart Waste Management
- 10.6. Challenge and Solution of Big Data for Smart City
- 10.6.1. Challenge in Big Data for Smart City
- 10.6.1.1. Data Integration
- 10.6.1.2. Security and Privacy
- 10.6.1.3. Data Analytics
- 10.6.2. Solution of Challenge Smart City
- 10.6.2.1. Conquering Difficulties with Enactment
- 10.6.2.2. Making People Smarter---Education for Everyone
- 10.7. Conclusion
- References.