Satellite communications systems : systems, techniques and technology /

Saved in:
Bibliographic Details
Main Authors: Maral, Gérard (Author), Bousquet, Michel (Author), Sun, Zhili (College teacher) (Author)
Corporate Author: ProQuest (Firm)
Format: Electronic eBook
Language:English
French
Published: Hoboken, NJ : John Wiley & Sons, 2020.
Edition:Sixth edition.
Subjects:
Online Access:Connect to this title online (unlimited simultaneous users allowed; 325 uses per year)
Table of Contents:
  • Machine generated contents note: 1.1. Birth of Satellite Communications
  • 1.2. Development of Satellite Communications
  • 1.3. Configuration of a Satellite Communications System
  • 1.3.1. Communications links
  • 1.3.2. space segment
  • 1.3.3. ground segment
  • 1.4. Types of Orbit
  • 1.5. Radio Regulations
  • 1.5.1. ITU organisation
  • 1.5.2. Space radiocommunication services
  • 1.5.3. Frequency allocation
  • 1.6. Technology Trends
  • 1.7. Services
  • 1.8. Way Forward
  • References
  • 2.1. Keplerian Orbits
  • 2.1.1. Kepler's laws
  • 2.1.2. Newton's law
  • 2.1.3. Relative movement of two point bodies
  • 2.1.4. Orbital parameters
  • 2.1.5. earth's orbit
  • 2.1.6. Earth-satellite geometry
  • 2.1.7. Eclipses of the sun
  • 2.1.8. Sun-satellite conjunction
  • 2.2. Useful Orbits for Satellite Communication
  • 2.2.1. Elliptical orbits with non-zero inclination
  • 2.2.2. Geosynchronous elliptic orbits with zero inclination
  • 2.2.3. Geosynchronous circular orbits with non-zero inclination
  • 2.2.4. Sun-synchronous circular orbits with zero inclination
  • 2.2.5. Geostationary satellite orbits
  • 2.3. Perturbations of Orbits
  • 2.3.1. nature of perturbations
  • 2.3.2. effect of perturbations; orbit perturbation
  • 2.3.3. Perturbations of the orbit of geostationary satellites
  • 2.3.4. Orbit corrections: station keeping of geostationary satellites
  • 2.4. Conclusion
  • References
  • 3.1. Baseband Signals
  • 3.1.1. Digital telephone signal
  • 3.1.2. Sound signals
  • 3.1.3. Television signals
  • 3.1.4. Data and multimedia signals
  • 3.2. Performance Objectives
  • 3.2.1. Telephone
  • 3.2.2. Sound
  • 3.2.3. Television
  • 3.2.4. Data
  • 3.3. Availability Objectives
  • 3.4. Delay
  • 3.4.1. Delay in the terrestrial network
  • 3.4.2. Propagation delay over satellite links
  • 3.4.3. Baseband-signal processing time
  • 3.4.4. Protocol-induced delay
  • 3.5. IP Packet Transfer QOS and Network Performance
  • 3.5.1. Definition of QoS in the ETSI and ITU-T standards
  • 3.5.2. IP packet transfer performance parameters
  • 3.5.3. IP service availability parameters
  • 3.5.4. IP network QoS class
  • 3.6. Conclusion
  • References
  • 4.1. Baseband Formatting
  • 4.1.1. Encryption
  • 4.1.2. Scrambling
  • 4.2. Digital Modulation
  • 4.2.1. Two-state modulation- BPSK and DE-BPSK
  • 4.2.2. Four-state modulation - QPSK
  • 4.2.3. Variants of QPSK
  • 4.2.4. Higher-order PSK and APSK
  • 4.2.5. Spectrum of unfiltered modulated carriers
  • 4.2.6. Demodulation
  • 4.2.7. Modulation spectral efficiency
  • 4.3. Channel Coding
  • 4.3.1. Block encoding and convolutional encoding
  • 4.3.2. Channel decoding
  • 4.3.3. Concatenated encoding
  • 4.3.4. Interleaving
  • 4.4. Channel Coding and the Power-Bandwidth Trade-Off
  • 4.4.1. Coding with variable bandwidth
  • 4.4.2. Coding with constant bandwidth
  • 4.4.3. Conclusion
  • 4.5. Coded Modulation
  • 4.5.1. Trellis-coded modulation
  • 4.5.2. Block-coded modulation
  • 4.5.3. Decoding coded modulation
  • 4.5.4. Multilevel trellis-coded modulation
  • 4.5.5. TCM using a multidimensional signal set
  • 4.5.6. Performance of coded modulations
  • 4.6. End-To-End Error Control
  • 4.7. Digital Video Broadcasting via Satellite (DVB-S)
  • 4.7.1. Transmission system
  • 4.7.2. Error performance requirements
  • 4.8. Second Generation DVB-S (DVB-S2)
  • 4.8.1. New technology in DVB-S2
  • 4.8.2. Transmission system architecture
  • 4.8.3. Error performance
  • 4.8.4. FEC encoding
  • 4.9. New Features of DVB-S2X
  • 4.10. Conclusion
  • 4.10.1. Digital transmission of telephony
  • 4.10.2. Digital broadcasting of television
  • References
  • 5.1. Configuration of a Link
  • 5.2. Antenna Parameters
  • 5.2.1. Gain
  • 5.2.2. Radiation pattern and angular beamwidth
  • 5.2.3. Polarisation
  • 5.3. Radiated Power
  • 5.3.1. Effective isotropic radiated power (EIRP)
  • 5.3.2. Power flux density
  • 5.4. Received Signal Power
  • 5.4.1. Power captured by the receiving antenna and free space loss
  • 5.4.2. Additional losses
  • 5.4.3. Conclusion
  • 5.5. Noise Power Spectral Density at the Receiver Input
  • 5.5.1. origins of noise
  • 5.5.2. Noise characterisation
  • 5.5.3. Noise temperature of an antenna
  • 5.5.4. System noise temperature
  • 5.5.5. Conclusion
  • 5.6. Individual Link Performance
  • 5.6.1. Carrier power to noise power spectral density ratio at receiver input
  • 5.6.2. Clear sky uplink performance
  • 5.6.3. Clear sky downlink performance
  • 5.7. Influence of the Atmosphere
  • 5.7.1. Impairments caused by rain
  • 5.7.2. Other impairments
  • 5.7.3. Link impairments - relative importance
  • 5.7.4. Link performance under rain conditions
  • 5.7.5. Conclusion
  • 5.8. Mitigation of Atmospheric Impairments
  • 5.8.1. Depolarisation mitigation
  • 5.8.2. Attenuation mitigation
  • 5.8.3. Site diversity
  • 5.8.4. Adaptivity
  • 5.8.5. Cost-availability trade-off
  • 5.9. Overall Link Performance with Transparent Satellite
  • 5.9.1. Characteristics of the satellite channel
  • 5.9.2. Expression for (C/N0)T
  • 5.9.3. Overall link performance for a transparent satellite without interference or intermodulation
  • 5.10. Overall Link Performance with Regenerative Satellite
  • 5.10.1. Linear satellite channel without interference
  • 5.10.2. Nonlinear satellite channel without interference
  • 5.10.3. Nonlinear satellite channel with interference
  • 5.11. Link Performance with Multibeam Antenna Coverage vs. Monobeam Coverage
  • 5.11.1. Advantages of multibeam coverage
  • 5.11.2. Disadvantages of multibeam coverage
  • 5.11.3. Conclusion
  • 5.12. Intersatellite Link Performance
  • 5.12.1. Frequency bands
  • 5.12.2. Radio-frequency links
  • 5.12.3. Optical links
  • 5.12.4. Conclusion
  • References
  • 6.1. Layered Data Transmission
  • 6.2. Traffic Parameters
  • 6.2.1. Traffic intensity
  • 6.2.2. Call blocking probability
  • 6.2.3. Burstiness
  • 6.2.4. Call delay probability
  • 6.3. Traffic Routing
  • 6.3.1. One carrier per station-to-station link
  • 6.3.2. One carrier per transmitting station
  • 6.3.3. Comparison
  • 6.4. Access Techniques
  • 6.4.1. Access to a particular satellite channel (or transponder)
  • 6.4.2. Multiple access to the satellite repeater
  • 6.4.3. Performance evaluation - efficiency
  • 6.5. Frequency Division Multiple Access (FDMA)
  • 6.5.1. TDM/PSK/FDMA
  • 6.5.2. SCPC/FDMA
  • 6.5.3. Adjacent channel interference
  • 6.5.4. Intermodulation
  • 6.5.5. FDMA efficiency
  • 6.5.6. Conclusion
  • 6.6. Time Division Multiple Access (TDMA)
  • 6.6.1. Burst generation
  • 6.6.2. Frame structure
  • 6.6.3. Burst reception
  • 6.6.4. Synchronisation
  • 6.6.5. TDMA efficiency
  • 6.6.6. Conclusion
  • 6.7. Code Division Multiple Access (CDMA)
  • 6.7.1. Direct sequence (DS-CDMA)
  • 6.7.2. Frequency hopping CDMA (FH-CDMA)
  • 6.7.3. Code generation
  • 6.7.4. Synchronisation
  • 6.7.5. CDMA efficiency
  • 6.7.6. Conclusion
  • 6.8. Fixed And On-Demand Assignment
  • 6.8.1. principle
  • 6.8.2. Comparison between fixed and on-demand assignment
  • 6.8.3. Centralised or distributed management of on-demand assignment
  • 6.8.4. Conclusion
  • 6.9. Random Access
  • 6.9.1. Asynchronous protocols
  • 6.9.2. Protocols with synchronisation
  • 6.9.3. Protocols with assignment on demand
  • 6.10. Conclusion
  • References
  • 7.1. Network Reference Models and Protocols
  • 7.1.1. Layering principle
  • 7.1.2. Open Systems Interconnection (OSI) reference model
  • 7.1.3. IP reference model
  • 7.2. Reference Architecture for Satellite Networks
  • 7.3. Basic Characteristics of Satellite Networks
  • 7.3.1. Satellite network topology
  • 7.3.2. Types of link
  • 7.3.3. Connectivity
  • 7.4. Satellite On-Board Connectivity
  • 7.4.1. On-board connectivity with transponder hopping
  • 7.4.2. On-board connectivity with transparent processing
  • 7.4.3. On-board connectivity with regenerative processing
  • 7.4.4. On-board connectivity with beam scanning (BFN - beam-forming network)
  • 7.5. Connectivity Through Intersatellite Links (ISLs)
  • 7.5.1. Links between geostationary and low earth orbit satellites (GEO-LEO)
  • 7.5.2. Links between geostationary satellites (GEO-GEO)
  • 7.5.3. Links between low earth orbit satellites (LEO-LEO)
  • 7.5.4. Conclusion
  • 7.6. Satellite Broadcast Networks
  • 7.6.1. Single uplink (one programme) per satellite channel
  • 7.6.2. Several programmes per satellite channel
  • 7.6.3. Single uplink with time division multiplexing (TDM) of programmes
  • 7.6.4. Multiple uplinks with time division multiplexing (TDM) of programmes on downlink
  • 7.7. Broadband Satellite Networks
  • 7.7.1. Overview of DVB-RCS/RCS2 and DVB-S/S2/S2X networks
  • 7.7.2. Protocol stack architecture for broadband satellite networks
  • 7.7.3. Physical layer and MAC layer
  • 7.7.4. Satellite MAC layer
  • 7.7.5. Satellite Link Control layer
  • 7.7.6. Quality of service
  • 7.7.7. Network layer
  • 7.7.8. Regenerative satellite mesh network architecture
  • 7.8. Transmission Control Protocol
  • 7.8.1. TCP segment header format
  • 7.8.2. Connection setup and data transmission
  • 7.8.3. Congestion control and flow control
  • 7.8.4. Impact of satellite channel characteristics on TCP
  • 7.8.5. TCP performance enhancement (PEP) protocols
  • 7.9. IPV6 Over Satellite Networks
  • 7.9.1. IPv6 basics
  • 7.9.2. IPv6 transitions
  • 7.9.3. IPv6 tunnelling through satellite networks
  • Contents note continued: 7.9.4. 6to4 translation via satellite networks
  • 7.10. Conclusion
  • References
  • 8.1. Station Organisation
  • 8.2. Radio-Frequency Characteristics
  • 8.2.1. Effective isotropic radiated power (EIRP)
  • 8.2.2. Figure of merit of the station
  • 8.2.3. Standards defined by international organisations and satellite operators
  • 8.3. Antenna Subsystem
  • 8.3.1. Radiation characteristics (main lobe)
  • 8.3.2. Side-lobe radiation
  • 8.3.3. Antenna noise temperature
  • 8.3.4. Types of antenna
  • 8.3.5. Pointing angles of an earth station antenna
  • 8.3.6. Mountings to permit antenna pointing
  • 8.3.7. Tracking
  • 8.4. Radio-Frequency Subsystem
  • 8.4.1. Receiving equipment
  • 8.4.2. Transmission equipment
  • 8.4.3. Redundancy
  • 8.5. Communication Subsystems
  • 8.5.1. Frequency translation
  • 8.5.2. Amplification, filtering, and equalisation
  • 8.5.3. Modems
  • 8.6. Network Interface Subsystem
  • 8.6.1. Multiplexing and demultiplexing
  • 8.6.2. Digital speech interpolation (DSI)
  • 8.6.3. Digital circuit multiplication equipment (DCME)
  • 8.6.4. Equipment specific to SCPC transmission
  • 8.6.5. Ethernet port for IP network connections
  • 8.7. Monitoring and Control; Auxiliary Equipment
  • 8.7.1. Monitoring, alarms, and control (MAC) equipment
  • 8.7.2. Electrical power
  • 8.8. Conclusion
  • References
  • 9.1. Mission and Characteristics of the Payload
  • 9.1.1. Functions of the payload
  • 9.1.2. Characterisation of the payload
  • 9.1.3. relationship between the radio-frequency characteristics
  • 9.2. Transparent Repeater
  • 9.2.1. Characterisation of nonlinearities
  • 9.2.2. Repeater organisation
  • 9.2.3. Equipment characteristics
  • 9.3. Regenerative Repeater
  • 9.3.1. Coherent demodulation
  • 9.3.2. Differential demodulation
  • 9.3.3. Multicarrier demodulation
  • 9.4. Multibeam Antenna Payload
  • 9.4.1. Fixed interconnection
  • 9.4.2. Reconfigurable (semi-fixed) interconnection
  • 9.4.3. Transparent on-board time domain switching
  • 9.4.4. On-board frequency domain transparent switching
  • 9.4.5. Baseband regenerative switching
  • 9.4.6. Optical switching
  • 9.5. Introduction to Flexible Payloads
  • 9.6. Solid State Equipment Technology
  • 9.6.1. environment
  • 9.6.2. Analogue microwave component technology
  • 9.6.3. Digital component technology
  • 9.7. Antenna Coverage
  • 9.7.1. Service zone contour
  • 9.7.2. Geometrical contour
  • 9.7.3. Global coverage
  • 9.7.4. Reduced or spot coverage
  • 9.7.5. Evaluation of antenna pointing error
  • 9.7.6. Conclusion
  • 9.8. Antenna Characteristics
  • 9.8.1. Antenna functions
  • 9.8.2. RF coverage
  • 9.8.3. Circular beams
  • 9.8.4. Elliptical beams
  • 9.8.5. influence of depointing
  • 9.8.6. Shaped beams
  • 9.8.7. Multiple beams
  • 9.8.8. Types of antenna
  • 9.8.9. Antenna technologies
  • 9.9. Conclusion
  • References
  • 10.1. Subsystems
  • 10.2. Attitude Control
  • 10.2.1. Attitude control functions
  • 10.2.2. Attitude sensors
  • 10.2.3. Attitude determination
  • 10.2.4. Actuators
  • 10.2.5. principle of gyroscopic stabilisation
  • 10.2.6. Spin stabilisation
  • 10.2.7. Three-axis stabilisation
  • 10.3. Propulsion Subsystem
  • 10.3.1. Characteristics of thrusters
  • 10.3.2. Chemical propulsion
  • 10.3.3. Electric propulsion
  • 10.3.4. Organisation of the propulsion subsystem
  • 10.3.5. Electric propulsion for station-keeping and orbit transfer
  • 10.4. Electric Power Supply
  • 10.4.1. Primary energy sources
  • 10.4.2. Secondary energy sources
  • 10.4.3. Conditioning and protection circuits
  • 10.4.4. Example calculations
  • 10.5. Telemetry, Tracking, and Command (TTC) and On-Board Data Handling (OBDH)
  • 10.5.1. Frequencies used
  • 10.5.2. telecommand links
  • 10.5.3. Telemetry links
  • 10.5.4. Telecommand (TC) and telemetry (TM) message format standards
  • 10.5.5. On-board data handling (OBDH)
  • 10.5.6. Tracking
  • 10.6. Thermal Control and Structure
  • 10.6.1. Thermal control specifications
  • 10.6.2. Passive control
  • 10.6.3. Active control
  • 10.6.4. Structure
  • 10.6.5. Conclusion
  • 10.7. Developments and Trends
  • References
  • 11.1. Installation in Orbit
  • 11.1.1. Basic principles
  • 11.1.2. Calculation of the required velocity increments
  • 11.1.3. Inclination coliection and circularisation
  • 11.1.4. apogee (or perigee) motor
  • 11.1.5. Injection into orbit with a conventional launcher
  • 11.1.6. Injection into orbit from a quasi-circular low altitude orbit
  • 11.1.7. Operations during installation (station acquisition)
  • 11.1.8. Injection into orbits other than geostationary (non-GEO orbits)
  • 11.1.9. launch window
  • 11.2. Launch Vehicles
  • 11.2.1. Brazil
  • 11.2.2. China
  • 11.2.3. Commonwealth of Independent States (CIS)
  • 11.2.4. Europe
  • 11.2.5. India
  • 11.2.6. Israel
  • 11.2.7. Japan
  • 11.2.8. South Korea
  • 11.2.9. United States of America
  • 11.2.10. Reusable launch vehicles
  • 11.2.11. Cost of installation in orbit
  • References
  • 12.1. Vacuum
  • 12.1.1. Characterisation
  • 12.1.2. Effects
  • 12.2. Mechanical Environment
  • 12.2.1. gravitational field
  • 12.2.2. earth's magnetic field
  • 12.2.3. Solar radiation pressure
  • 12.2.4. Meteorites and material particles
  • 12.2.5. Torques of internal origin
  • 12.2.6. effect of communication transmissions
  • 12.2.7. Conclusions
  • 12.3. Radiation
  • 12.3.1. Solar radiation
  • 12.3.2. Earth radiation
  • 12.3.3. Thermal effects
  • 12.3.4. Effects on materials 73i)
  • 12.4. Flux of High-Energy Particles
  • 12.4.1. Cosmic particles
  • 12.4.2. Effects on materials
  • 12.5. Environment During Installation
  • 12.5.1. environment during launching
  • 12.5.2. Environment in the transfer orbit
  • References
  • 13.1. Introduction to Reliability
  • 13.1.1. Failure rate
  • 13.1.2. probability of survival, or reliability
  • 13.1.3. Failure probability or unreliability
  • 13.1.4. Mean time to failure (MTTF)
  • 13.1.5. Mean satellite lifetime
  • 13.1.6. Reliability during the wear-out period
  • 13.2. Satellite System Availability
  • 13.2.1. No backup satellite in orbit
  • 13.2.2. Backup satellite in orbit
  • 13.2.3. Conclusion
  • 13.3. Subsystem Reliability
  • 13.3.1. Elements in series
  • 13.3.2. Elements in parallel (static redundancy)
  • 13.3.3. Dynamic redundancy (with switching)
  • 13.3.4. Equipment having several failure modes
  • 13.4. Component Reliability
  • 13.4.1. Component reliability
  • 13.4.2. Component selection
  • 13.4.3. Manufacture
  • 13.4.4. Quality assurance
  • References.