Tensors for data processing : theory, methods, and applications /
Saved in:
Main Author: | |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
San Diego :
Elsevier Science & Technology,
[2021]
|
Subjects: | |
Online Access: | Connect to this title online (unlimited simultaneous users allowed; 325 uses per year) |
Table of Contents:
- Front Cover
- Tensors for Data Processing
- Copyright
- Contents
- List of contributors
- Preface
- 1 Tensor decompositions: computations, applications, and challenges
- 1.1 Introduction
- 1.1.1 What is a tensor?
- 1.1.2 Why do we need tensors?
- 1.2 Tensor operations
- 1.2.1 Tensor notations
- 1.2.2 Matrix operators
- 1.2.3 Tensor transformations
- 1.2.4 Tensor products
- 1.2.5 Structural tensors
- 1.2.6 Summary
- 1.3 Tensor decompositions
- 1.3.1 Tucker decomposition
- 1.3.2 Canonical polyadic decomposition
- 1.3.3 Block term decomposition
- 1.3.4 Tensor singular value decomposition
- 1.3.5 Tensor network
- 1.3.5.1 Hierarchical Tucker decomposition
- 1.3.5.2 Tensor train decomposition
- 1.3.5.3 Tensor ring decomposition
- 1.3.5.4 Other variants
- 1.4 Tensor processing techniques
- 1.5 Challenges
- References
- 2 Transform-based tensor singular value decomposition in multidimensional image recovery
- 2.1 Introduction
- 2.2 Recent advances of the tensor singular value decomposition
- 2.2.1 Preliminaries and basic tensor notations
- 2.2.2 The t-SVD framework
- 2.2.3 Tensor nuclear norm and tensor recovery
- 2.2.4 Extensions
- 2.2.4.1 Nonconvex surrogates
- 2.2.4.2 Additional prior knowledge
- 2.2.4.3 Multiple directions and higher-order tensors
- 2.2.5 Summary
- 2.3 Transform-based t-SVD
- 2.3.1 Linear invertible transform-based t-SVD
- 2.3.2 Beyond invertibility and data adaptivity
- 2.4 Numerical experiments
- 2.4.1 Examples within the t-SVD framework
- 2.4.2 Examples of the transform-based t-SVD
- 2.5 Conclusions and new guidelines
- References
- 3 Partensor
- 3.1 Introduction
- 3.1.1 Related work
- 3.1.2 Notation
- 3.2 Tensor decomposition
- 3.2.1 Matrix least-squares problems
- 3.2.1.1 The unconstrained case
- 3.2.1.2 The nonnegative case
- 3.2.1.3 The orthogonal case
- 3.2.2 Alternating optimization for tensor decomposition
- 3.3 Tensor decomposition with missing elements
- 3.3.1 Matrix least-squares with missing elements
- 3.3.1.1 The unconstrained case
- 3.3.1.2 The nonnegative case
- 3.3.2 Tensor decomposition with missing elements: the unconstrained case
- 3.3.3 Tensor decomposition with missing elements: the nonnegative case
- 3.3.4 Alternating optimization for tensor decomposition with missing elements
- 3.4 Distributed memory implementations
- 3.4.1 Some MPI preliminaries
- 3.4.1.1 Communication domains and topologies
- 3.4.1.2 Synchronization among processes
- 3.4.1.3 Point-to-point communication operations
- 3.4.1.4 Collective communication operations
- 3.4.1.5 Derived data types
- 3.4.2 Variable partitioning and data allocation
- 3.4.2.1 Communication domains
- 3.4.3 Tensor decomposition
- 3.4.3.1 The unconstrained and the nonnegative case
- 3.4.3.2 The orthogonal case
- 3.4.3.3 Factor normalization and acceleration
- 3.4.4 Tensor decomposition with missing elements
- 3.4.4.1 The unconstrained case